

Introduction to Computing

UCT Department of Computer Science
Computer Science 1015F

Hussein Suleman
<hussein@cs.uct.ac.za>

Brian DeRenzi
<bderenzi@cs.uct.ac.za>

February 2016

Computer Science in Context

5 Branches of Computing
 Computer Science

 Foundations and principles (software)
 Information Systems

 Business processes & information
 Computer Engineering

 Hardware and communications
 Software Engineering

 Software development processes
 Information Technology

 Application of computing

Science – CS

Science – Computer eng.

EE/CE

Science – Bus. computing

IS

Reference: ACM Computing Curricula: Overview

IS

CS/IS Postgraduate

What is a Researcher / Scientist?
 A researcher

generates/locates
knowledge.

 A scientist
generates/locates
knowledge using the
scientific method.

Observe

Publish

Theorise

Conclude

Analyse

Experiment

 Qualifications/Degrees
 Diploma

 Learn about core technology and application
 Bachelors

 Learn about principles and core technology
 Bachelors (Honours)

 Learn about advanced technology and how to interpret research
 Masters

 Learn how to do research
 Doctorate

 Make significant new contribution to human knowledge

 Industry Certifications : CCNA, MCSE, etc.
 Learn about specific technology and application

 Computing College Diplomas
 Learn about core/specific technology and application

What is Computer Science

Why Computing is Important 1/5
 Earth Simulator in Japan provides advance notice of

natural disasters to preserve human life!

Reference: http://www.jamstec.go.jp/ceist/e/

Why Computing is Important 2/5
 Computer Aided Tomography (CAT scans) are

computer-reconstructed views of the internal organs
that help in diagnosing patients.

Reference: Wikipedia

Why Computing is Important 3/5
 The world’s information is available at our fingertips!

Why Computing is Important 4/5
 Games, Movies, MSN Messenger, Facebook …

Reference:
World of Warcraft,
The Burning Crusade,
Blizzard Entertinment

Why Computing is Important 5/5
 1.5 trillion

dollars are
spent every
year in online
purchases
around the
world!

Areas in Computing @UCT CS
 Advanced Information Management

 Databases, distributed computing

 Artificial Intelligence and Knowledge Representation

 Machine learning, ontologies, logic

 Collaborative Visual Computing
 Graphics, usability, virtual environments

 Digital Libraries

 Search engines, repositories, digital preservation

 High Performance Computing
 Scientific computing, cluster/grid computing, GPGPUs, visualization

 ICT for Development

 Healthcare, education, job creation, human computer interaction

 Security

 Information security, network security

 Telecommunications

 Traffic engineering, bandwidth management, rural networks

What is Computer Science?
 Computer Science (CS) is the study of:

 Computer software
 Algorithms, abstractions and efficiency
 Theoretical foundation for computation

 What you learn in Computer Science:
 Principles of computation
 How to make machines perform complex tasks
 How to program a computer
 What current technology exists and how to use it
 Problem solving

Problem Solving in CS 1/2
1.Understand the problem

1.What are the knowns and unknowns?

2.Plan how to solve the problem
1.What algorithm is used to solve the problem?

2.What assumptions are being made?

3.Is this similar to other problems?

4.Can the problem be split into parts?

3.Carry out your plan – write program
1.Write program(s) to implement algorithm(s).

Problem Solving in CS 2/2
4.Assess the result

1.Does the program conform to the algorithm?

2.Does the program/algorithm solve the problem?

3.Is the program correct for all cases?

5.Describe what you have learnt
1.... so you do not make the same mistakes again.

6.Document the solution
1.Write a report for users of the program.

2.Write comments within the program.

Reference: Vickers, P. 2008. How to think like a programmer. Cengage.

Algorithms
 An algorithm is a set of steps to accomplish a task.

 Everyday tasks require algorithms but we usually do
not think about them.
 E.g., putting on shoes, brushing teeth

 Algorithms must be precise so that they are
 Repeatable
 Have a predictable outcome
 Can be executed by different people

Algorithm: Read a Novel
1.Acquire book

2.Find comfortable spot to sit

3.Open book to set of facing pages

4. If there are no more unread pages, go to step 8

5.Read facing pages

6.Turn page over

7.Go to step 4

8.Close book

9.Be happy

Elements of Algorithms
 Sequence

 Each step is followed by another step

 Selection
 A choice may be made among alternatives

 Iteration
 A set of steps may be repeated

 Any language with these 3 constructs can express
any classical algorithm.

Classic Problems / Algorithms
 Boil water in a kettle
 Take the minibus taxi to town
 Put on a pair of shoes
 Bake a cake
 Making a telephone call
 Buying a #1 Original Chicken Burger

Algorithm to Boil Water in Kettle
1. Take the lid off kettle
2. If there is enough water already, go to step 7
3. Put kettle under tap
4. Open tap
5. While kettle is not full,

 Wait
6. Close tap
7. Replace lid on kettle
8. Plug kettle into power outlet
9. Turn kettle on
10. While water has not boiled,

 Wait

11. Turn kettle off
12. Remove plug from power outlet

Algorithm: Take Minibus Taxi to Town
1. Make sure you have enough money
2. Wait at bus stop
3. Flag down taxi as it approaches
4. Get into taxi (somehow)
5. Collect fare from behind you, add your money and pass it

forward
6. Shout at driver to stop
7. When taxi stops, prod other passengers to make them move

out
8. Get out of taxi
9. Give thanks for a safe trip!

Can we be more precise?
 Let us make up a precise drawing language (inspired

by Turtle/Logo).

 Suppose we have an invisible box 10cm square, and
we start at the bottom left corner, facing up.

 We have 2 instructions:
 Draw <centimetres>

 Draw a line

 Spin <degrees>
 Turn to the right

Drawing Example
 Draw 10cm
 Spin 90
 Draw 10cm
 Spin 90
 Draw 10cm
 Spin 90
 Draw 10cm

Drawing Exercise 1
 What does this draw?

 Spin 90
 Draw 10cm
 Spin 180
 Draw 10cm
 Spin 90
 Draw 10cm
 Spin 90
 Draw 10cm

Drawing Exercise 2 (1/3)
 This exercise is a 2-person task.

 Person A will be the algorithm designer (aka the
programmer).

 Person B will be the algorithm implementer (aka the
computer).

 At first everyone is Person A - then Person B.
 Some pairs of volunteers will do the task up-front

where the roles are distinct.

Drawing Exercise 2 (2/3)
 Person A: Write down instructions (in our special

language) to draw this shape.
 You have 2 minutes!

Drawing Exercise 2 (3/3)
 Swap your instructions with someone else.
 Person B: Draw this shape using Person A's

instructions.
 You have 2 minutes!

Programs
 A program is a set of instructions given to a computer, corresponding to an

algorithm to solve a problem.
 The act of writing a program is called programming.

 Programs are written in a precise language called a programming
language.

 Sample Program (in Python):

letters = [32, 85, 67, 84]
for a in [70364627997701,4329864565765,4329327694853,
 4329864565765,4329505817940]:
 while a>0:
 print (chr(letters[a & 3]),end="")
 a = a >> 2
 print ()

Question
 How is an algorithm different from a program?

Process of Programming
 Programs work as follows:

 Ingest information from the real world (input).
 Process data internally.
 Send computed data back to real world (output).

 Because of different input, each time a program
executes the results can be different.

Python
 There are many different types of computer

languages, and many different languages.

 This course is based on Python.

 Python is a general-purpose interpreted
programming language invented in the 1980s/1990s
by Guido van Rossum at CWI.

 We use version 3 because it is easier to learn.

How We Program in Python
 We write programs, stored in text files.
 Each program is a set of instructions that the Python

interpreter will execute when the program is executed by
the user.

 We often do both of these things in an Integrated
Development Environment (IDE).

 We can also use the interactive interpreter to run short
programs while testing our ideas.

 Later, we will neaten our code into blocks called functions.
 Python is an OOP language but we will not use this.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

