

Information Retrieval

hussein suleman
uct cs honours 2016

Introduction
 Information retrieval is the process of

locating the most relevant information to
satisfy a specific information need.

 Traditionally, we used databases and
keywords to locate information.

 The most common modern application is
search engines.

 Historically, the technology has been
developed from the mid-50’s onwards,
with a lot of fundamental research
conducted pre-Internet!

Exercise
 Find the information to meet these

information needs using only queries on
Google:
 You are thinking of studying at UCT and want

to know what Computer Science degrees we
offer.

 You want to contribute millions of rands to the
high school where your lecturer studied. What
is the name of the school?

 You have a hole in your Linux shirt and you
need to buy a patch to cover the hole. Where
can you buy this?

Terminology
 Term

 Individual word, or possibly phrase, from a
document.

 Document
 Set of terms, usually identified by a document

identifier (e.g., filename).
 Query

 Set of terms (and other semantics) that are a
machine representation of the user’s needs.

 Relevance
 Whether or not a given document matches a

given query.

More Terminology
 Searching/Querying

 Retrieving all the possibly relevant results for a
given query.

 Indexing
 Creating indices of all the documents/data to

enable faster searching/quering.
 Ranked retrieval

 Retrieval of a set of matching documents in
decreasing order of estimated relevance to the
query.

Models for IR
 Boolean model

 Queries are specified as boolean expressions
and only documents matching those criteria
are returned.

 e.g., apples AND bananas

 Vector model
 Both queries and documents are specified as

lists of terms and mapped into an n-
dimensional space (where n is the number of
possible terms). The relevance then depends
on the angle between the vectors.

Vector Model in 2-D

bananas

ap
pl

es

θ1

θ2

query

document2

document1 θ1 < θ2
This implies that document1
is more relevant to the query
than document2.

Extended Boolean Models
 Any modern search engine that returns no

results for a very long query probably uses
some form of boolean model!
 Bing, Google, etc.
 Vector models are not as efficient as boolean

models.
 Exercise: Come up with a query that

returns very few results!
 Some extended boolean models filter on

the basis of boolean matching and rank on
the basis of term weights (tf.idf).

Filtering and Ranking
 Filtering

 Removal of non-relevant results.
 Filtering restricts the number of results to

those that are probably relevant.
 Ranking

 Ordering of results according to calculated
probability of relevance.

 Ranking puts the most probably relevant
results at the “top of the list”.

Efficient Filtering/Ranking
 Comparing every document to each query

is very slow.
 Use inverted files to speed up algorithms

by possibly ignoring:
 terms with zero occurrence in each document.
 documents where terms have a very low

occurrence value.
 We are only interested in those documents

that contain the terms in the query.

Inverted (Postings) Files

bananas bananas apples
bananas bananas

apples bananas apples apples

Doc2

Doc1

 An inverted file for a term contains a list of
document identifiers that correspond to that
term.

Doc1: 1
Doc2: 4

Doc1: 3
Doc2: 1

5bananas

4applesoriginal
documents

inverted files

Implementation of Inverted Files

 Each term corresponds to a list of
weighted document identifiers.
 Each term can be a separate file, sorted by

weight.
 Terms, documents identifiers and weights can

be stored in an indexed database.
 Search engine indices can easily take 2-6

times as much space as the original data.
 The MG system (part of Greenstone) used

index compression and claimed 1/3 as much
space as the original data.

Inverted File Optimisations
 Use identifier hash/lookup table:

 apples: 1 3 2 1
 bananas: 1 1 2 4

 Sort weights and use differential values:
 apples: 2 1 1 2
 bananas: 1 1 2 3

 Aim: reduce values as much as possible so
that optimal variable-length encoding
schemes can be applied.
 (For more information, read up on basic

encoding schemes in data compression)

IF Optimisation Example

WId

15
54
73
22
31

WId

73
54
31
22
15

W’Id

23
24
11
12
15

WId

73
54
31
22
15

Original
inverted
file

Sort on
W(eight)
column

To get the original data:
W[1] = W’[1]

W[i] = W[i-1]+W’[i]

Subtract
each weight
from the
previous
value

Transformed
inverted file –
this is what is
encoded and
stored

Note: We can do
this with the ID
column instead!

Boolean Ranking
 Assume a document D and a query Q are both n-

term vectors.
 Then the inner product is a measure of how well

D matches Q:

 Normalise so that long vectors do not adversely
affect the ranking.

Similarity=D⋅Q=∑
t=1

n

d t . q t

Similarity= 1
∣D∣∣Q∣∑t=1

n

d t . qt

Boolean Ranking Example
 Suppose we have the document vectors D1:(1, 1,

0) and D2:(4, 0, 1) and the query (1, 1, 0).
 Non-normalised ranking:

 D1: (1, 1, 0)·(1, 1, 0) = 1.1 + 1.1 + 0.0 = 2
 D2: (4, 0, 1)·(1, 1, 0) = 4.1 + 0.1 + 1.0 = 4
 Ranking: D2, D1

 Normalised ranking:

 D1: (1, 1, 0)·(1, 1, 0)/√2.√2 = (1.1 + 1.1 + 0.0)/2 = 1
 D2: (4, 0, 1)·(1, 1, 0)/√17.√2 = (4.1 + 0.1 + 1.0)/√34 = 4/√34
 Ranking: D1, D2

∣D1∣=√∑i=1

m

d 1, i
2 =√1.1+1.1+0.0=√2 ∣D2∣=√∑i=1

m

d2, i
2 =√4.4+0.0+1.1=√17

∣Q∣=√∑
i=1

m

qi
2=√1.1+1.1+0.0=√2

tf.idf
 Term frequency (tf)

 The number of occurrences of a term in a
document – terms which occur more often in a
document have higher tf.

 Document frequency (df)
 The number of documents a term occurs in –

popular terms have a higher df.
 In general, terms with high “tf” and low

“df” are good at describing a document
and discriminating it from other
documents – hence tf.idf (term frequency
* inverse document frequency).

Inverse Document Frequency
 Common formulation:

 Where ft is the number of documents term t
occurs in (document frequency) and N is the total
number of documents.

 Many different formulae exist – all increase the
importance of rare terms.

 Now, weight the query in the ranking formula to
include an IDF with the TF.

w t= loge 1 N
f t

Similarity= 1
∣D∣∣Q∣∑t=1

n

d t . log e1N
f t .qt

Term Frequency
 Scale term frequency so that the subsequent

occurrences have a lesser effect than earlier
occurrences.

 Choose only terms in Q - as this is boolean - so
ensure every term has a value of at least 1 (where
before they were 0).

 Lastly, eliminate |Q| since it is constant.

Similarity= 1
∣D∣∣Q∣ ∑

t∈Q∩D
1 loge f d , t . log e1N

f t

Similarity= 1
∣D∣ ∑

t∈Q∩D
1log e f d , t . loge 1 N

f t

Vector Ranking
 In n-dimensional Euclidean space, the angle

between two vectors is given by:

 Note:
 cos 90 = 0 (orthogonal vectors shouldn’t match)
 cos 0 = 1 (corresponding vectors have a perfect match)

 Cosine θ is therefore a good measure of similarity
of vectors.

 Substituting good tf and idf formulae in X.Y, we
then get a similar formula to before (except we
use all terms t[1..N]).

cosθ= X⋅Y
∣X∣.∣Y∣

Term Document Space
 A popular view of inverted files is as a matrix of

terms and documents.

41Bananas

13Apples

Doc2Doc1

documents

terms

Clustering
 In term-document space, documents that

are similar will have vectors that are
“close together”.

 Even if a specific term of a query does not
match a specific document, the clustering
effect will compensate.

 Centroids of the clusters can be used as
cluster summaries.

 Explicit clustering can be used to reduce
the amount of information in T-D space.

Evaluation of Retrieval Algorithms
 Recall

 The number of relevant results returned.
 Recall = number retrieved and relevant / total number relevant

 Precision
 The number of returned results that are relevant.
 Precision = number retrieved and relevant / total number retrieved

 F-measure
 F = (2*R*P)/(R+P)

 Relevance is determined by an “expert” in
recall/precision experiments. High recall and high
precision are desirable.

Typical Recall-Precision Graph

recall

pr
ec

is
io

n

In general, recall and
precision are at odds in an IR
system – better performance
in one means worse
performance in the other!

Other Techniques to Improve IR
 Stemming, Stopping
 Thesauri
 Metadata vs. Fulltext
 Relevance Feedback
 Inference Engines
 LSI
 PageRank
 HITS

Stemming and Case Folding
 Case Folding

 Changing all terms to a standard case, e.g.,
lowercase

 Stemming
 Changing all term forms to canonical versions.

 e.g., studying, studies and study map to “study”.
 Stemming must avoid mapping words with

different roots to the same term.
 Porter’s Stemming Algorithm for English

applies a set of rules based on patterns of
vowel-consonant transitions.

Stopping
 Stopwords are common words that do not

help in discriminating in terms of
relevance.
 E.g., in for the a an of on

 Stopwords are not standard and depend on
application and language.

Thesauri
 A thesaurus is a collection of words and

their synonyms.
 e.g., According to Merriam-Webster, the

synonyms for “library” are “archive” and
“athenaeum”.

 An IR system can include all synonyms of
a word to increase recall, but at a lower
precision.

 Thesauri can also be used for cross-
language retrieval.

Metadata vs. Full-text
 Text documents can be indexed by their

contents or by their metadata.
 Metadata indexing is faster and uses less

storage.
 Metadata can be obtained more easily

(e.g., using open standards) while full text
is often restricted.

 Full-text indexing does not rely on good
quality metadata and can find very specific
pieces of information.

Relevance Feedback
 After obtaining results, a user can specify

that a given document is relevant or non-
relevant.

 Terms that describe a (non-)relevant
document can then be used to refine the
query – an automatic summary of a
document is usually better at describing
the content than a user.

Inference Engines
 Machine learning can be used to digest a

document collection and perform query
matching.
 Connectionist models (e.g., neural networks)
 Decision trees (e.g., C5)

 Combined with traditional statistical
approaches, this can result in increased
recall/precision.

Latent Semantic Indexing
 LSI is a technique to reduce the

dimensionality of the term-document
space, resulting in greater speed and
arguably better results.

 Problems with traditional approach:
 Synonymy – two different words that mean the

same thing.
 Polysemy – two different meanings for a single

word.
 LSI addresses both of these problems by

transforming data to its “latent
semantics.”

Singular Value Decomposition
 SVD is used in LSI to factor the term-document

matrix into constituents.
 Calculations are based on eigenvalues and eigenvectors

- many Mathematics packages can compute an SVD as
a built-in function.

A=U∑V T=[* * * * *
* * * * *
* * * * *
* * * * *
* * * * *

] [* *
*] [* * *

* * *
* * *]

SVD Sizes
 If A, the term-document matrix, is an mxn

matrix,
 U is an mxm orthogonal matrix
 V is an nxn orthogonal matrix
 ∑ is the mxn diagonal matrix containing values

on its diagonal in decreasing order of value.
i.e., σ1 ≥ σ2 ≥ σ3 ≥ … ≥ σmin(m,n)

 Note:
 m is the number of terms, represented by the

rows of A
 n is the number of documents, represented by

the columns of A

Approximation
 Replace ∑ with an approximation where the

smallest values are zero.

∑= [1. 578
1 . 320

1 .111
0. 870

0 . 230
]

becomes

∑= [1. 578
1 . 320

1 .111
0. 0

0 .0
]

Effect of Approximation

 If only p values are retained in ∑, then
only p columns of U and p rows of V must
be stored.

A '=U '∑ ' V T '=[* * 0 0 0
* * 0 0 0
* * 0 0 0
* * 0 0 0
* * 0 0 0

] [* *
0][* * *

* * *
0 0 0]

LSI Example 1/2
 Consider a document collection:

 D1: apples bananas bananas bananas pears
 D2: bananas bananas bananas
 D3: pears

 With query: q=“apples”
 The term-document matrix will be:

101pears

033bananas

001apples

D3D2D1

LSI Example 2/3

LSI Example 3/3

Note: in practice, LSI does not generate the approximated matrix.

Advantages of LSI
 Smaller vectors and pre-calculations result

in faster query matching.
 Smaller term-document space – less

storage required.
 Automatic clustering of documents based

on mathematical similarity (basis vector
calculations).

 Elimination of “noise” in document
collection.

Web Data Retrieval
 Web crawlers are often bundled with

search engines to obtain data from the
WWW.

 Crawlers follow each link (respecting
robots.txt exclusions) in a hypertext
document, obtaining an ever-expanding
collection of data for indexing/querying.

 WWW search engines operate as follows:

crawl queryindex

PageRank
 PageRank (popularised by Google)

determines the rank of a document based
on the number of documents that point to
it, implying that it is an “authority” on a
topic.

 In a highly connected network of
documents with lots of links, this works
well. In a diverse collection of separate
documents, this will not work.

 Google uses other techniques as well!

Simple PageRank
 PageRank works with a complete collection of

linked documents.
 Pages are deemed important if

 They are pointed to by many other pages,
 Each also of high importance.

 Define
 r(i) = rank of a page
 B(i)= set of pages that point to i
 N(i) = number of pages that i points to

Interpretation: r(j) distributes its weight evenly to all its N(j) children

r (i)= ∑
j∈B (i)

r (j)/N (j)

Computing PageRank
 Choose a random set of ranks and iterate

until the relative order doesn’t change.

 Basic Algorithm:
 s = random vector
 Compute new r(i) for each node
 If |r-s|<ε, r is the PageRank vector
 s = r, and iterate.

PageRank Example

123
2
4
2
B(i)

14
13
32
11
N(i)Node

1

2 3

4

0.25
0.25
0.25

0.25

r0(i)

0.361
0.194
0.25

0.194

r3(i)

0.375…0.250.5834
0.125…0.0830.0833
0.375…0.5830.252

0.125…0.0830.0831

r200(i)…r2(i)r1(i)Node

R=0.125

R=0.125

R=0.375

R=0.375

Sinks and Leaks
 In practice, some pages have no outgoing

or incoming links.
 A “rank sink” is a set of connected pages

with no outgoing links.
 A “rank leak” is a single page with no

outgoing link.
 PageRank does the following:

 Remove all leak nodes.
 Introduce random perturbations into the

iterative algorithm.

HITS
 Hypertext Induced Topic Search ranks the

results of an IR query based on authorities
and hubs.

 An authority is a page that many pages
(hubs) point to.
 E.g., www.uct.ac.za

 A hub is a page that points to many pages
(authorities).
 E.g., yahoo.com

HITS Algorithm 1/2
 Submit the query to an IR system and get

a list of results.

 Create a focused subgraph as follows:
 Let R = set of all result pages
 Let S = R
 Let Q = {}
 For each page p in R

 Add to Q all pages in S that p points to
 Add to Q all pages (up to a limit) in S that point to p

HITS Algorithm 2/2
 Initialise ai and hi for each node i to

arbitrary values.

 Repeat until convergence:
 ai = sum of hj values of all pages pointing to it
 hi = sum of aj values of all pages it points to
 Normalise the sum of ai values to 1
 Normalise the sum of hi values to 1

HITS Example

123
2
4
2
B(i)

24
43
1342
41
F(i)Node

1

2 3

4

0.5
0.25
0.00

0.25

a200(i)

0.25
0.25
0.25

0.25

a0(i)

0.083
0.25
0.417

0.25

h1(i)

0.00…0.50.254
0.25…0.1670.253
0.5…0.1670.252

0.25…0.1670.251

h200(i)…a1(i)h0(i)Node

a=0.25
h=0.25

a=0.25
h=0.25

a=0
h=0.5

a=0.5
h=0

HITS vs PageRank vs LSI vs …
 Under what circumstances can we use

each?
 What are the advantages/disadvantages of

each?
 How do they compare to traditional

boolean/vector searching?

Exercise 1/2
 Download the "simple search" demo from

Resource on Vula.
 There are 2 collections:

 apples
 cran.all.1400

 Index your collection using:
 python3 index.py apples

 Query your collection (for "apple pear")
using:
 python3 query.py apples apple pear

Exercise 2/2
 Modify parameters.py to test the effect of:

 turning off normalization
 turning off stemming
 turning off idf
 keeping idf but without the log formula
 turning off the log formula for tf
 combinations!

 In each case find a query that will show
the effect.

 Note: You need to reindex whenever you
change stemming!

References
 Arasu, A., J. Cho, H. Garcia-Molina, A. Paepcke and S.

Raghavan (2001). “Searching the Web”, ACM Transactions
on Internet Technology, Vol 1., No. 1, August 2001, pp. 2-
43.

 Bell, T. C., J. G. Cleary and I. H. Witten (1990) Text
Compression, Prentice Hall, New Jersey.

 Berry, M. W. and M. Browne (1999) Understanding Search
Engines: Mathematical Modelling and Text Retrieval, SIAM,
Philadelphia.

 Deerwester, S., S. T. Dumais, T. K. Landauer, G. W. Furnas
and R. A. Harshman (1990). “Indexing by latent semantic
analysis”, Journal of the Society for Information Science,
Vol. 41, No. 6, pp. 391-407.

 Witten, I. H., A. Moffat and T. C. Bell (1999) Managing
Gigabytes, Morgan Kauffman, San Francisco.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

