the objective of providing students with an exploratory tool for learning how a diesel engine responds to
adjustments in governor control lever position and to changes in engine load. The simulatiog was
programmed for the Windows environment using a multimedia authoring package. The engine functioned
in accordance with simple textbook principles. The first part of the simulator required the input of engine
performance parameters that were used to define the bounds within which the engine was gxpected to
operate. For the second part, a full screen engine panel illustrated in Figure 1 was designed to incorporate
various elements including push buttons, slider buttons, digital meters and a graph panel to allow the
student to interact directly with the engine and to observe its responses on a dynamic and instantaneous

basis.

This type of interaction is ideal for visual, active, sensing and global learners, and if used correctly, can
exercise their application, analysis, synthesis and evaluation skills.

Analysis

In this category, one of the most commonly used software packages is spreadsheets, which allow the user
to assemble relatively complex models that rely on suitable input data, equations and macros where
necessary, to generate results and graphs. Another group of software packages that fall into the category
of analysis are the equation solvers such as Mathematica, MATLAB and Mathcad. Students are able to
set up a system of equations with inputs in an appropriate sequence and obtain a solution. in pumencal and
graphical form. The interactive nature of these programs allows the student to use a151gn1ﬁca.n’.t amount
of time exploring complex problems by varying system parameters and operating conditions and
observing the results almost immediately rather than spending tedious time programming the system of
equations used to model the physical system as well as the numerical techniques needed to solve these
equations. With the emphasis on analysis rather than programming, the student not only learps thr.ough
discovery from the results of varying parameters, but he/she has the opportunity to practise his/her

creativity and synthesis skills.

Turbuchnr@ed

MES L e R T e e

F igu 3 Ene cntrol panel of simulator

This process has been taken a step further by combining textbooks with equation solvers:,, in wh%ch
solutions to specific problems in the text are provided. An example is the Schaum’s Inter_actlve Outline
series published by McGraw Hill and MathSoft Inc., which incorporate a Mathcad Electronic Book. Such
applications address all six levels of Bloom’s taxonomy and help virtually all learner types in Table 1.

Another example involving the development of qualitative problem solving skills is a set of computer
modules developed to supplement a problem solving textbook by Fogler and LeBlanc (1994). An example
of a screen from the problem analysis module is shown in Figure 4.

WHAT: Identity

POSSIBLE

F1 Main Menu

Figure 4 Problem analysis sample screen (Fogler and LeBlanc, 1994)

Conclusions

Software that has been developed more recently for instruction of engineering students addresses many
of the educational objectives put forward in Bloom’s taxonomy. In future development of computer-based
instructional materials, it is vital that appropriate pedagogical objectives and evaluation methods be
identified right from the start to ensure that the software is effective.

References

Andrews, SJ, 1994. Some cultural and perceptual implications of courseware development and the use
of technology within a multicultural, multilingual society (a cautionary tale). Proc. International
Conference on Computer-Assisted Education and Training in Developing Countries, Eskom
Conference and Exhibition Centre, Halfway House, Johannesburg.

Felder, RM and Silverman, LK, 1988. Learning and teaching styles in engineering education.
Engineering Education, 78(7), 674-681.

Fogler, HS and LeBlanc, SE, 1994. Strategies for creative problem solving. Publ. Prentice-Hall PTR,
New Jersey, USA.

Grayson, DJ, 1996. Using education research to develop waves courseware. Computers in Physics,
10(1): 30-37 ‘

Hansen, AC, Reid, JF and Goering, CE, 1995. Diesel engine simulator as a multimedia educational tool.
Proc. Annual Conference of American Society for Engineering Education, Anaheim, California,
USA. Vol 1: 140-144.

Lown, JB, Prather, TG and Peters, PA, 1993. Multimedia training for loggers, arborists and woodcutters.
ASAE paper 937523, Winter Meeting. American Society of Agricultural Engineers, Chicago,
Illinois, USA.

Montgomery, S, 1995. Addressing diverse learning styles in a large classroom. Proc. Annual
Conference of American Society for Engineering Education, Anaheim, California, USA. Vol 1:
344-349.

Montgomery, S and Fogler, HS, 1996. Selecting computer-aided instructional software. Journal of
Engineering Education, 85(1): 53-60.

Reeves, TC, 1994. A model of the effective dimensions of interactive learning. Proc. International
Conference on Computer-Assisted Education and Training in Developing Countries, Eskom
Conference and Exhibition Centre, Halfway House, Johannesburg.

Rosati, PA and Felder, RM, 1995. Engineering student responses to an index of learning styles. Proc.
Annual Conference of American Society for Engineering Education, Anaheim, California, USA.
Vol 1: 739-743.

Sheldon, EJ, Field, WE and Tormoehlen, RL, 1993. CAI/Multimedia approach to farm tractor and
machinery safety certification. ASAE paper 933540, Winter Meeting. American Society of
Agricultural Engineers, Chicago, Illinois, USA.

176 Saicsit ‘96

Saicsit ‘96 177

SOFTWARE ENGINEERING DEVELOPMENT METHODOLOGIES
APPLIED TO COMPUTER-AIDED INSTRUCTION

Paula Kotz¢ and Ruth de Villiers |
Department of Computer Science and Information Systems \
University of South Africa, P O Box 392, Pretoria, 0001
Email: {kotzep,dvillmr}@alpha.unisa.ac.za

Abstract

The research reported in this paper aims to integrate software engineering approaches with
instructional factors in the requirements, analysis, design and production phases of
instructional software development. The integration has resulted in the evolution of a branch
of software engineering (SE) called courseware engineering. The paper reports on the results
of an independent study we have undertaken into the aspects of SE that are appropriate for the
development of courseware. Examples of other research efforts combining the disciplines of
SE and instructional system development (ISD) are given, where applicable. Two SE methods
were identified as being particularly useful and appropriate to ISD: prototyping and object-
oriented (OO) design. Factors that support the use and applicability of these two approaches
are discussed.

1

|

|
Introduction |)

|

Software engineering (SE) is concerned with the development of software systems using sound engineering
principles including both technical and non-technical aspects — over and above the use of specification,
design and implementation techniques, human factors and software management should also be addressed. i |
Well-engineered software provides the services required by its users. Such software should be produced in
a cost-effective way and should be appropriately functional, maintainable, reliable, efficient and provide a
relevant user interface [Shneiderman 1992, Sommerville 1992].

Computer-aided instruction (CAI) is concerned with the way in which computers can be used to support

students engaged in particular educational activities and incorporates a variety of computer-aided instruction \

and learning modes, for example, formal courseware such as tutorials and drills, and more open-ended | |

software such as simulations, concept maps and microworlds. Over the last decade such systems have
|

proliferated, evolving from simple beginnings, merely in the educational territory, to the realm of complex
| software systems. As such, they should be designed and developed by applying the established principles of
! software engineering to instructional software development (ISD).

The general problem of ISD is therefore to develop appropriate methods for the specification, design and
implementation of CAI software systems. The research reported in this paper aims to integrate software
engineering approaches with instructional factors in the requirements, analysis, design and production phases
of instructional software development. The integration has resulted in the evolution of a branch of software
engineering called courseware engineering. Two SE methods are identified as being particularly useful and
appropriate to ISD: prototyping and object-oriented (OO) design. Factors that support the use and
applicability of these two approaches are discussed.

Software Engineering Models |

One of the cornerstones of SE is the software life cycle, describing the activity stages that take place from
the initial concept formation for a software system, up to its implementation and eventual phasing out and
replacement. Complementing these life cycle models are a number of design and development models.

Saicsit ‘96 179 ‘

Educational Product Idea / Research & Major Activities
Needs Requests Proposal Development
v v v v Needs assessment; Identify
goals & objectives; Learner
< Needs Analysis analys}s; Devglopmentl
operating environment.

Feasibility
Study

Justify solution; Time frame;
Costs/benefits analysis.

Conduct task analysis;
Conduct instructional
analysis.

Requirements
Analysis

ZO0—=-2>»0—T—amM<

~

Prototype
Construction

Implementation
/ Development

Build prototype.

Sequencing; Storyboarding;
Designing screenfvisual
intercativity, feedback &
learner control.

ZO—mW—<mA

Flowcharting; Authoring;
Programming.

Testing /
Evaluation

Testing, Debugging;
Formative evaluation.

Documentation;

Maintenance Maintenance

Figure 1: Chen and Shen’s life cycle model [Chen 1989, p 11]

Life cycle models

A multitude of general software engineering life cycle (or process) models exist, some being variations on
others. Two examples are the so-called waterfall model, and the spiral model.

. Waterfall model: In the waterfall approach [Budgen 1994, Conger 1994, Sommerville 1992] the
software process is viewed as made up of a number of stages or activities such as requirements
specification, software design, software implementation, testing, operation and maintenance, etc. Each
activity serves as input to the next. One disadvantage of this approach is that it suits a principled
approach to design where all requirements for a system have to be known before system development
is begun.

The behaviour of a CAI system is highly dependent on the domain knowledge modelled within the
system. The tasks a user will perform are often not known until the user is familiar with the system on
which he performs them. A second drawback of this process model is that it does not promote the use
of notations and techniques which support the user’s perspective of the CAI system.

e Spiralmodel: An alternative to the waterfall approach is Boehm's spiral model [Boehm 1988] which
is essentially an iterative model. Its key characteristic is an assessment of management risk items at
various stages of the project and the initiation of actions to counteract these risks. Before each cycle,
a review procedure judges whether to move on to the next cycle in the spiral. A cycle of the spiral
commences by elaborating objectives such as performance, functionality, and so on. Alternative ways
of achieving these objectives and constraints are then enumerated, followed by an assessment of each
objective. This typically results in the identification of sources of project risk. The next step is to
evaluate these risks by activities such as more detailed analysis, prototyping, simulation, etc. After risk
evaluation a development model (or a combination of models) for the system is chosen.

Combining SE aspects with those related specifically to the design and development of instructional systems
resulted in a number of specialised life cycle models specifically aimed at the development of computer-
based instructional systems. Two examples are:

180 | | ~ Saicsit ‘96

ITUATIONAL
EVALUATION
(Diagnosis)
Analyse need / problems
Analyse constraints
Iresources
Analyse target population
Propose solution plan

PRODUCTION

Prepare program description
Prepare Instructional activities
(print, video, computer, inteactive,
live)

Prepare management system
Produce program prototyp

Specify instr.
strategies
Specify message
design

Specify human
factors

Review / select

DESIGN

Analyse inform ation!
- content
- context
Define entry knowledgé
Define organization /
sequence

Conduct formative
evaluation
Revise program

IMPLEMENTATION

pecify and
develop learner
evaluation

Disseminate and
implement
program (instruction

Refine final program
Define dissemination

Conduct summative
evaluation

Develop program ID plan
Define learning
environment

Specify goals / objectives
Define management
Define specification of insi

Conduct
maintenance
evaluation

Revise and
refine program

Maintain system

Define educational
philosophy

Define learning theory
Define instructional theory

MAINTENANCE

ANALYSIS

Figure 2: ISD* [Tennyson 1994, p 4]

e Chen and Shen’s model: Chen and Shen [Chen 1989] propose a life cycle model similar to the
waterfall model but aimed specifically at the development of CAI with the joint objective producing
high quality products and development effectiveness. Verification and revision occur after each phase
resulting in an iterative, cyclic process, as illustrated in Figure 1.

o Tennyson’s ISD": Tennyson’s Fourth Generation Instructional Systems Design Model (ISD*) [Tenny-
son 1994], as illustrated in Figure 2, advocates the employment of advancements from cognitive science
and intelligent programming techniques to automate instructional system development. It focuses on
explicit rules in terms of development activities rather than on the sequencing of phases.

Development models

Detailed software process models are still the subject of research, but a number of general models or
paradigms of software development can be identified as supporting these process models [Dix 1993,
Sommerville 1992]. Two of these approaches have been widely used:

e Exploratory programming (also known as evolutionary prototyping): A working system is developed
as quickly as possible and then modified until it performs in an adequate way. This approach is used
to a great extent in artificial intelligence systems development where a detailed requirements
specification cannot be formulated, and where adequacy rather than correctness is the aim of the
systems designers. The disadvantage of this approach relates to the encapsulation of design decisions.
Firstly, some of the earlier decisions may have been wrong and may never be removed from the system.
Secondly, because the behaviour of an interactive system is highly dependent on the knowledge
modelled within the system, earlier versions of the system will not include all of the knowledge to be
included in the completed system.

e Throw-away prototyping: The software process starts off in a similar way to exploratory programming
in that the first phase of development involves the development of a progtam for user experiment. The
objective of the development is, however, to establish system requirements. The prototyping process
is followed by re-implementation of the software to produce the desired software system. Suffering from

Saicsit ‘96 181

the same drawbacks as exploratory programming, it has a further disadvantage in that it may
concentrate only on the surface features of the design, rather than on deeper issues and the functioning
of the interface, and does not on its own guarantee that the software produced exhibits the required
interaction qualities.

To compensate for the limitations of the prototyping approaches, and to support the waterfall and spiral
models in the requirements and design activity phases, a number of researchers in recent years have
advocated the use of two more approaches in the design process of interactive systems: formal transformation
and system assembly from reusable components.

o Formal transformation: A formal or abstract specification of the software system is developed and then
transformed, by means of correctness preserving transformations, to an implemented software system.
The principal value of using formal specification techniques in the software development process is that
it compels an analysis of the system requirements at an early stage. Correcting errors at this stage of
development is much cheaper than modifying a delivered system. A range of abstract modelling
approaches for interactive systems are reported in [Abowd 1990, Dearden 1995, Dix 1991, Harrison
1990, Palanque 1995, Paterné 1995, Sommerville 1992].

The formality of these models is intended to assure the exploration of the consequences of the design
without constructing prototypes or other working models of the design, as well as algorithmic
manipulation of the design.

e System assembly from reusable components: The system development process is either a total reuse
process using components which already exist in assembling the new system, or available components
applicable to the envisaged system are reused while additional components are developed using any
other development approach.

A trait of an engineering discipline is that it is founded upon an approach to system design which makes
maximum use of existing components. Design engineers base their designs on components which are
common with, and tried and tested in other systems of the same, or similar, nature. A number of reuse
approaches are reported in [Biggerstaff 1989, Johnson 1988, Tracz 1938].

Notwithstanding the disadvantages of the prototyping approaches, they are still the most viable options for
the development of interactive CAI systems. The reason for this is firstly determined by the high interactivity
that characterises instructional software in relation to the computer literacy levels of the primary developers
of such software, as well as that of the end-users of the completed product. The intended end-users are
frequently laymen with respect to computer usage and unless they are at ease with the human-computer
interface, the software will do little to achieve its instructional and learning ends. Prototypes are instrumental
in pilot-testing by such end-users. Prototyping also allow for early evaluation by instructors, trainers,
teachers, subject-matter experts, peers, etc. Visual perception and hands-on experience of part of an
operational system often results in the instructor-client modifying the objectives and strategies. Also, the
developers of such system are, more often than not, novice computer users, with absolutely no background
in formal specification methods. The use of formal transformation techniques would therefore be totally

inappropriate.

The major purposes of conventional software are data processing and information processing, where defined
activities occur in a predefined sequence. Instructional software, by contrast, comprises synthesis,
presentation, practice and assistance facilities in the complex realm of human cognition, and has a high level
of human-computer interactivity. Whether in a situation of program-control where the flow is branched
deterministically according to user-response, or in a situation of user-control where the learner may branch
or browse at will, the sequence of events and activities varies greatly. CAI prototypes can play a vital role
in demonstrating proposals on-screen, thus clarifying actual requirements and identifying misconceptions
and potential errors at an early stage. Not only should basic aspects such as screen layout and colours be
scrutinised, but also the strategies for control and navigation through the material. Usability factors, such as
Jearnability and consistency can be evaluated, also interface aspects such as coherence of textual and visual

displays, and accessibility of facilities.

Particularly when a piece of instructional software breaks new ground, prototyping is required at the design

182 Saicsit ‘96

T

and p_rogramming stages in order to ensure feasibility of intentions, to refine requirements, to reduce
excessive written descriptions, to determine the optimal navigation and control strategies hands-on, and also
to ensure that an appropriate programming approach is used for implementation.

Development tools or authoring environments should offer modularity, thus facilitating the removal, addition
or adaptation of a segment without affecting other segments or the unit as a whole, and plasticity, the ability -
to make changes easily. If exorbitant time and costs are incurred in developing a prototype, the process is
not cost-effective. An ISD prototype may either be evolutionary, i.e. a limited version of the final product
later developed through to full functionality, or else a throwaway. In the latter case, the software used to build
the prototype may not be the same as that used for the final system.

Furthermore, although envisaged by many, there is still no common base of reusable components of CAI
software which is widely documented and which can be used when developing a CAI system with similar
functionality. It is also interesting to note that prototype production forms a central part of Chen and Shen’s
life cycle model, and is also listed as one of the activities in the production ‘phase’ of ISD*. Other researchers
advocating the use of prototyping approaches for ISD include Black and Hinton [Black 1988, Black 1989],
Gray and Black [Gray 1994], Lantz [Lantz, no date] Tripp and Bichelmeyer [Tripp 1990], and Wong [Wong
1993].

Design models

Software design is in essence a problem-solving task. It is more important to design a solution that will
achieve its purpose in doing the required job properly, than to achieve elegance and efficiency at the expense
of accuracy and reliability. A designer needs to abstract the critical features of a system, so as to concentrate
initially on building a logical model of the system rather than becoming over involved with detailed design
and physical implementation at an early stage.

Various methodologies and representations are available to facilitate the processes of analysis, design, and
system modelling, in particular, the process-oriented, data-oriented, and object-oriented approaches:

o The process-oriented paradigm centres around the events, procedures and flows that comprise a
traditional procedural software system. Such applications are characterised by conventional data flow
and updating of data stores. Events trigger processes, and processes call other processes, sequentially
or selectively. The process-oriented approach is epitomised by concepts and tools such as top-down
design, functional decomposition, transaction analysis, data-flow diagrams, structure charts and input-
output transformations. It tends to discount evolutionary changes.

e Data-oriented approaches are based on the philosophy that data is more stable and unchanging than
processes. The underlying principles are enterprise analysis and relational database theory, and key
concepts are entities, attributes, relationships and normalisation.

« The latest emerging methodology is the object-oriented paradigm [Bell 1992, Booch 1994, Budgen
1994, Coad 1995, Conger 1994, Schach 1996], which integrates aspects of, and uses formalisms from,
both the other major methodologies, and uses certain concepts from object-oriented programming
languages. It is based on objects, which encapsulate both data and operations (processes) on that data.
An object is a real-world entity whose processes and atiributes are modelled in a computerised
application. In object-oriented programming languages, computation is achieved when messages are
passed to the objects in the program, and a central aspect is the abstract data type (ADT), which
permits operations to be performed on an object without being implementation-specific. Objects
incorporating data are identified as data entities and not as specific data structures.

Conventional data-flow and process-linkage do not feature heavily in instructional and learning software and
such software therefore does not lend itself to the process-oriented paradigm. Object-oriented development
has been used in large, complex systems, compared to which CAI courseware and environments comprise
relatively few objects and components. Nevertheless, the strategies outlined can be beneficially applied in
the analysis, design and development of instructional and learning software.

Budgen [Budgen 1994] describes an object as an entity which possesses a state, exhibits behaviour, and has

Saicsit ‘96 183

2 distinc_t identity. Sommerville [Sommerville 1992, p. 194] proposes the following definition: “An object
is an entity which has a state (whose representation is hidden) and a defined set of operations which operate
on that state. The state is represented as a set of object attributes”.

Analysis of classical CAI tutorials, simulations, drill-and-practice software, and state-of-the-art user-
controlled interactive learning environments reveals distinct design objects, or components, which possess
unique identities, certain aftributes and relationships, and have operations performed on them, i.e. much CAI
software is explicitly, or implicitly, consisting of instructional components [Merrill 1988]. Many CAI systems
are comprised mainly of instructional presentations and exercise/question segments. The main processing
activities are determination of which unit / segment / example / exercise to present or do next, and the
assessment of student responses. The means of determination depends on the locus of end-user control —
whether program-control, learner-control, or a combination thereof. The various and varied instructional
activities and leaming experiences — comprising learning segments, example presentations, practice
exercises and assessment activities — whether in textual or graphic form, whether requiring active learner-
participation or passive perusal, can readily be perceived as objects. The objects are separate, yet strongly
interrelated and it is appropriate to implement them in an object-oriented design. Such component-based
instructional systems can best be implemented by an object-oriented design. The OO paradigm thus appears
to be the most appropriate software engineering development methodology for ISD.

Even in the traditional life cycle models such as the waterfall model, the distinction between the systems
design (broad design) and the program design (detailed design/coding) can become blurred. In the OO
paradigm, however, the boundary is even more indistinct, because both top-down analysis and bottom-up
program development occur simultaneously or, at least, iteratively. The three traditional activities of analysis,
design, and implementation are all present, but the joints between are seamless. The unifying factor is the
prime role played by objects and their interrelationships. Modelling is prominent in object-oriented design,
the basic architecture being assembled from models of the entities and the relationships between them. Reuse
is a feature of OO design, since the prominent class and inheritance features lend themselves to code reuse.

CAI software incorporates well-defined objects, both concrete and abstract, and particularly in situations with
an initial lack of precise specifications, its procurement can be expedited and facilitated by a development
process incorporating evolutionary prototyping. Combining the essence of prototyping and the OO paradigm
requires a life cycle model emphasizing overlap and evolution with explicit incorporation of a prototyping
phase. Chen and Shen’s model, ISD*, as well as other similar life cycle models, for example the Wong
prototyping model [Wong 1993], the Booch model[Booch 1994] and the Henderson-Sellers and Edward’s
fountain model [Henderson 1990], all incorporate these requirements.

Conclusion

This article overviewed general software engineering models, tools and techniques, and investigated their
applicability to instructional systems development.

A life cycle model which includes evolutionary prototyping appears to be most appropriate for the
development of instructional software, so that initially fuzzy requirements can be refined and the initial
working version can be modified and expanded towards a final operational CAI product.

The object-oriented methodology proves itself to be, in the terms of Korson & McGregor [Korson 1990],
“a unifying paradigm”, which is appropriate for the analysis and representation of CAIL Viewing a system
as object-based provides a more versatile foundation than a view based fundamentally on data modelling or
on its functions and procedures. Although user-input plays a major role in determining the path through
instructional software, there is little conventional data flow. The concept of an object is a utilitarian approach,
which brings together such varied items as concrete objects, abstract objects, data, processes, and
environmental entities external to the software (yet vital components of the system), such as the human user.
Incorporation of the user as an object is particularly beneficial in CAI, due to its highly interactive and
individualised nature. The tools and representations of the OO paradigm can be of great value in the analysis,
design and documentation of instructional softwate.

It is hoped that object-based control structures developed for specific applications can eventually be used

184 Saicsit ‘96

as generic, content-free shells to present formal instruction or practice exercises in different instructional
modes in varying subjects and courses. This would capitalise on the modularity and reuse potential inherent
in an object-oriented design.

References

[Abowd 1991] Abowd G D. 1991. Formal Aspects of Human-Computer Interaction. DPhil. Thesis, Oxford
University, Programming Research Group.

[Bell 1992] Bell D, Morrey I & Pugh J. 1992. Sofiware Engineering: A Programming Approach (2nd ed.).

Hemel Hempstead: Prentice Hall International (UK) Ltd.

[Biggerstaff 1989] Biggerstaff T J & Perlis A J (Eds). Sofiware Reusability. Volumes 1 & 2. Reading MA:
Addison-Wesley.

[Black 1988] Black T R. 1988. Prototyping CAL courseware: a role for computer-shy subject experts. In:
Aspects of Educational Technology Vol XXI, Designing New Systems and Technologies for
Learning, edited by H Mathias, H Rushby & R Budgett. London: Kogan Page.

[Black 1989] Black T R & Hinton T. 1989. Courseware design methodology: the message from software
engineering. In: Aspects of Educational Technology Vol XXII, Promoting Learning, edited by
C Bell, J Davies & R Winders. London: Kogan Page.

[Boehm 1988] Boehm B W. 1988. A spiral model of software development and enhancement. JEEE
Computer,21(5),61 - 72..

[Booch 1994] Booch G. 1994. Object-Oriented Analysis and Design: with Applications (2nd ed.) Redwood
City, CA: Benjamin/Cummings Publishing Company, Inc.

[Budgen 1994] Budgen D. 1994. Software Design. Wokingham: Addison-Wesley.

[Chen 1989] Chen J W & Shen C. 1989. Software engineering: a new component for instructional software
development. Educational Technology, 29(9), 9 - 15.

[Coad 1995] Coad P, North D & Mayfield M. 1995. Object Models: Strategies, Patterns & Applications.
Englewood Cliffs, NJ: Prentice Hall.

[Conger 1994] Conger S A. 1994. The New Sofiware Engineering. Belmont, CA: Wadsworth Publishing
Company.

[Dearden 1995] Dearden A M. 1995. The use of Formal Models in the Design of Interactive Case Memory
Systems. DPhil Thesis, University of York (UK).

[Dix 1991] Dix A. 1991. Formal Methods for Interactive Systems. London: Academic Press.

[Dix 1993] Dix A, Finlay J, Abowd G & Beale R. Human-Computer Interaction. Hemel Hempstead:
Prentice-Hall.

[Gray 1993] Gray D E & Black T R. 1994. Prototyping of computer-based training materials. Computers in
Education, 22(3), 251 — 256.

[Harrison 1990] Harrison M D & Thimbleby H (Eds). 1990. Formal Methods in Human-Computer Interaction.

Cambridge: Cambridge University Press.
[Henderson 1990] Henderson-Sellers B & Edwards J M. 1990. The Object-Oriented Systems Life Cycle.
Communications of the ACM, 33 (9), 142 - 159.

[Johnson 1988] Johnson R & Foote B. 1988. Designing reusable classes. Object-Oriented Programming, 1(2),
22 -35.

[Korson 1990] Korson T & McGregor J D. 1990. Understanding object-oriented: a unifying paradigm.
Communications of the ACM, 33 (9), 40 — 60.

[Lantz no date] Lantz K E. (no date). The Prototyping Methodology. Englewood Cliffs, NJ: Prentice-Hall.

[Merrill 1988] Merrill M D. 1988. Applying component display theory to the design of courseware. In:

Instructional Designs for Microcomputer Courseware, edited by D H Jonassen. Hillsdale, NJ:
Lawrence Erlbaum Associates. ’

[Palanque 1995] Palanque P & Bastide R (Eds). 1995. Proceedings of the Eurographics Workshop in Toulouse
France, June 1995. Wien: Springer-Verlag.

[Paterno 1995] Paternd F (Ed). 1995. Interactive Systems: Design, Specification and Verification. Berlin:
Springer-Verlag.

[Schach 1996] Schach S R. 1996. Classical and Object-Oriented Software Engineering (3rd ed.). Boston,

MA: Aksen Associates Inc. Publishers.

[Shneiderman 1992] Shneiderman B. 1992. Designing the User Interface. Reading, MA: Addison-Wesley.

[Sommerville 1992] Sommerville I 1992. Software Engineering (4th ed.). Wokingham: Addison-Wesley Publishing
Company.

[Tennyson 1994] Tennyson R D. 1994. Knowledge base for automated instructional system development. In:
Automating Instructional Design, Development, and Delivery, edited by R D Tennyson.
Berlin: Springer Verlag.

[Tracz 1988] Tracz W (Ed). 1988. Software Reuse: Emerging Technology. Washington DC: IEEE Computer
. Society Press.
[Tripp 1990] Tripp S D & Bichelmeyer B. 1990. Rapid prototyping: an alternative instructional design
strategy. Educational Technology, Research and Development, 38(1), 31 — 44.
[Wong 1993] Wong S C. 1993. Quick prototyping of educational software: an object-oriented approach.

Journal of Educational Technology Systems, 22(2), 155 - 172.

Saicsit ‘96 185

COBIE: AN INTEGRATED COBOL ENVIRONMENT
N Pillay
Department of Financial Studies
Technikon Natal - Pietermaritzburg

Abstract

Development software is one of the courses that first year students studying towards a
Diploma in Financial Studies enrol for. This course contains an appreciable amount of
RMCOBOL programming. Past experience is indicative of the fact that students seem to have
difficulty programming in RMCOBOL. This paper looks at some of the problems
experienced by these students and describes COBIE, a Cobol Integrate Environment,
developed to assist students overcome these prof)lems. Furthermore the paper provides a
description of the students experience with COBIE. Attention is also given to the effect that
a student's learning style may have on the difficulty experienced by a student in using COBIE.
Finally ways in which COBIE can be extended to meet the needs of novice computer
programmers is examined.

Introduction

As part of the course on software development first year Financial Studies Students are required to complete
a course on COBOL programming. These students, majority of whom are novice compuier users, experience
much difficulty in programming in RMCOBOL. This paper firstly provides an account of the problems
experienced by these students. It then goes on to illustrate how a phased development of a programiming
environment can possibly provide a means of overcoming the problems experienced by students.

On outline of each of the phases involved in the development of this programming environment is then
provided. A detailed description of the first phase of the development of COBIE is given. This description
firstly examines the facilities provided by COBIE and then gives an account of the students' experiences with
COBIE.

Finally further extensions to the system in order to meet the needs of these novice programmers is reviewed.

Problems Encountered
The problems experienced by students are two-fold:
Problem 1 :

Students experienced difficulty in using the RMCOBOL system. In order to create, run and compile COBOL
programs using RMCOBOL the following procedure had to be followed:

1. The user had to create the source and data files in an editor or wordprocessor of his or her choice.

2. The user had to then evoke the RMCOBOL Compiler at the command line.

3. Step 2 resulted in a compiler listing either being scrolled across the screen or being written to a list
file if the user specified this option.

4. To view the list file the user would have to again use an editor or word processor of his or her
choice.

5. Based on the listing described in steps 3 and 4 the user would then have to correct any errors listed
by the compiler in the source code.

6. Finally the user would call the progtafm RUNCOBOL at the DOS prompt to run the COBOL
program.

Saicsit ‘96 187

As a result these students, being novice computer users experienced much difficulty in just creating, editing,
compiling and running RMCOBOL programs. Students found the procedure that had to be followed to
complete these tasks difficult to use and remember.

Problem 2:

Students experienced much difficulty and frustration in programming in COBOL. Barstow etal [BABSS4]
define this as a "complexity barrier" which hampers the productivity of novice programmers. According to
Barstow et al this barrier can best be broken by building large programmmg support systems called

programming environments.

A possible solution to Problem 1 is for students to use RMCOSTAR which is a RMCOBOL project
manager and editor from which COBOL programs can be edited, compiled, run and debugged. Reasons for
not using RMCOSTAR include the following:

. RMCOSTAR is generally not sufficiently user friendly for novice c-omputer users. For example
files are stored according to projects which can lead to these confusion.

. It would not be possible to extend the RMCOSTAR system in order to provide a solution to the
difficulties specified in Problem 2.

Proposed Solution

According to Teitelman et al [BARS84] a programming environmept that is "cooperatj‘{e and helpful” w;.(]{
prevent a novice programmer from spending most of his or her "tnm? and energy ﬁghtqlg a system that (.h
times scems bent on frustrating his best efforts". Hence based on the literature surveyed it was decided ﬂ.mt
a possible solution to the Problem 2 defined above would be to develop a programming enhwro;nn{e.nt w]ncl}
these novice programmers would be ncomfortable” using. Examples of sucl_l programming cn?mnnilegfs
already in existence include Cedar which was developed from the Mesa environment, Pecan, Pict, and the
Cornell Program Synthesiser just to name a few.

The foundation of the programming environment to be developed would be an integrated environment which
would help users overcome the difficulties specified in Problem 1.

According to Teitelman et al [BARS84] the contribution made by users in terms of suggestions.of
improvements that should be made to Interlisp and facilities that should be provided by '(he.lnte'rhsp
Programming Environment have proven invaluable. Hence throughout this study much emphasis will be
placed on user feedback.

The development of COBIE will be undertaken in three phases:

Phase 1:

L The development of an integrated environment that enables the user to edit, compile, and run
COBOL programs in an attempt to provide a solution to Problem 1.

L _

2. Evaluation of this environment.

Phase 2:

1. During this phase improvements will be made to COBIE based on the evaluation in Phase 1.

2. According to Barstow et al [BARS84] a programming environment must combine the powers of
188 Saicsit ‘96

a compiler, an editor, a debugging system, a documentation system and a problem solver. COBIE
will be extended to provided a debugger and documentation. During the process of debugging users
will be able to make necessary changes to the source code.

3. Evaluation of the extended system.

Phase 3:

1. Improvements made to the system based on the evaluation in Phase 2.

2. Additional mechanisms need to be added to COBIE to assist students to program in COBOL. The

following mechanisms will be examined in order to extend COBIE to a environment in which these
novice programmers are "comfortable" programming in:

. In their description of an integrated Prolog Programming Environment Schreweis et al [SCHR93]
emphasise that an "UNDO" option should be available to users. The importance of an "UNDO"
option is still further emphasised in Teitelman et al's description of the Interlisp programming
environment [BARS84].

. An automatic error correction facility:

Teitelman et al in their paper " Automated Programmering: The Programmer's Assistant"
[BARS84] describe DWIM a mechanism for automatically correcting trivial errors made by
programmers such as spelling mistakes and punctuation errors. The importance of such a facility
is further stressed by the developers of the Interlisp environment.

. Barstow et al [BARS84] emphasis that "In writing a program, the use should not need to be
continually concerned with the exact form of the structures being used."

This idea forms the basis of the Cornell Program Synthesizer (CPS). CPS is a programming
environments that provides users with templates of the grammars of each simplified statement of
a programming language. All the user has to do is provide the arguments or expressions at a cursor
position in these templates. The use of such COBOL templates in COBIE will be looked at.

. Question and answering:

Barstow et al [BARS94] describe a question and answering technique to help uses identify the
effects of making certain changes in their programs prior to making these changes.

. An interactive browser to display various view of the current state of computation of a program.

. According to Schreweis [SCHR93] " The human mind is strongly visual oriented and acquires
information at a significantly higher rate by discovery of graphical relationships in complex pictures
than by reading text”. The significance of the use of visual environments is further stressed by Shu
[GLIN90] who states that pictures are more powerful than words as a means of communication.

An example of a visual environment is PECAN. Shu describes PECAN as a system which supports
multiple views of a user's program. These views include a syntax directed editor, a Nassi-
Schneiderman flowchart, a module interconnection diagram of how the program is organised, and
stack data view showing the current state of the data stack. ‘

Other examples of visual environments include Pict, PIGS and Xerox Star System. The effect of
COBIE being extended to a visual environment based on the above examples will be examined.

Various monitoring mechanisms similar to those described by Barstow et al [BARS84] to keep track of
statistics regarding the utilization of the facilities provided by COBIE at each stage in this phase will be built

Saicsit ‘96

189

into the system.

Cobol Integrated Environment (COBIE)

The integrated environment developed to meet the objectives of Phase 1 described above was created using
Turbo Vision and is similar to the Integrated Development Environment (IDE) provided by Turbo Pascal.

System Specifications

COBIE, like RMCOBOL, is a DOS based system which can be run on any IBM compatible microcomputer.

COBIE Interface

The COBIE interface consists of three components namely a pull down menu, a status bar and a desktop.

According to Kay [GLIN90] multiple windows that have the following characteristics:

. displays associated with several user tasks which could be viewed simultaneously;
. switching between tasks must be done with the press of a button,

. no information will be lost in the process of switching; and

. screen space would be used economically;

formed the basis of an "integrated environment. COBIE provides users with this multiple window facility
in which to implement the necessary tasks required.

Facilities Offered by COBIE

The pull down menu which forms part of the COBIE interface is comprised of three submenus namely File,
Cobol, and View.

The File submenn provides the user with the option of creating new source and data files or editing existing
files, and saving these files.

The Cobol submenu provides the user with a Compile and Run option. Upon choosing the Compile option
the user is prompted to confirm the name of the file to be compiled. The RMCOBOL compiler is then
evoked. Thereafter the user's screen is divided into two windows:

. one containing the source program; this window contains a line number indicator to assist the user
find any errors indicated in the compiler listing;

. one containing the listing produced by the compiler.

The user can switch between the two windows and hence correct errors specified in the compiler listing in
the source code. The Run option results in the RMCOBOL program RUNCOBOL being implemented.
Upon choosing the Run option the user is required to confirm the name of the COBOL file to be rumn.

The View submenu provides the nser with the options of viewing a particular compiler listing or a report file
that has been created as the result of running a specific COBOL program.

190 Saicsit ‘96

G EnETE— S ———

Evaluation of the COBIE System

"Hands-on" sessions with COBIE were held during which students were required to firstly make minor
changes to two COBOL programs and then compile and run these programs. In order to evaluate the COBIE
environment at the end of these sessions students were issued with questionnaire. Eighteen students of the
twenty two enrolled for the course completed and returned the questionnaire. This questionnaire was
designed based on that used by Glinert et al [GLIN90] in their student evaluation of the Pict system. A list
of the questions contained in the questionnaire are listed in Table 1.

Table 1 : Evaluation Questionnaire

1. Have you found the program easy to use? Explain

2. Could you easily remember the steps that were required to carry the necessary tasks?
3. Did you find the program fun to use?

4. Would you like to use the program agam?

5. What improvements do you think should be made to the program?

6. List any problems that you have experienced.

7- Describe your experience of using the program.

8. Any _ither comments

To obtain a measure of the effect of students' learning styles prior to the use of the system a survey was
conducted using Kolb's Inventory to determine the learning styles of these students. Nineteen of the twenty
two students enrolled for the course completed and returned the questionnaires.

Tn order to obtain a correlation between a student's learning style and his or her experience with COBIE only

the feedback of those students that responded to both questionnaires was examined. Sixteen students
responded to both questionnaires of which nine were female and seven male.

Responses to questionnaire
Table 2 lists the responses to the first four questions:

Table 2: Responses to questionnaire

QUESTION YES NO - | UNSURE | NO
NUMBER RESPONSE
1 9 7 - .
2 12 2 2 :
3 10 5 - 1 jl
4 15 : - 1 JJ

From Table 2 it is clear that a majority of the students found the COBIE system easy to use. Comments
made by students included:

"The program eliminated time wasting and irritating procedures."
%

"Steps were not difficult.”

"Easy to grasp, understand and remember."

Saicsit ‘96 191

However seven students did not find the program easy to use. Comments made by these students included
"as time goes on it will be easier"’; "Not easy - because it was my first time to use it".

This is consistent with responses obtained by Glinert et al [GLIN90] in the evaluation of the Pict system.
Students attributed the lack of ease of use of the Pict system to the fact that it was the first time that they were
using the system.

It is evident from Table 2 that again a majority of students found that they could easily remember the steps
that were required to edit, compile and run COBOL programs using COBIE.

All students with the exception of one student who did not respond to this question indicated that they
definitely wanted to use the COBIE system again.

Two problems were listed by students:

1. Firstly due to COBIE being used in a network environment students were prompted to "Insert a disk
in drive A:" four times during the compilation process. This made compiling of a program rather
tedious and frustrating.

2. Secondly if a compiler listing of a source program could not be created a blank window was

displayed on the screen by COBIE and this window could not be "closed".
Improvements mentioned by students were based on these two problems experienced.
Comments describing the students experience with COBIE included:
"It was most educational.”

" I found it interesting and fun to use. The steps were easy to remember, however I experienced some
difficulties when trying to compile my program."

"Challenging"
" At the moment the program is fine because I understand what we've done at this point in time."

Only five students provided any additional comments. This comments emphasised that students required
more practical sessions with COBIE.

The Effect of Learning Styles on the ease of use of COBIE

Finnie [FINN90] defines four learning styles namely, Converger, Diverger, Assimilator and Accommodator
as derived by Kolb. From the study conducted it was found that students who responded positively to the
questions "Have you found the program easy to use?" and "Could you easily remember the steps that were
required to carry out the necessary tasks?" predominately possessed a the Converger or Accommodator
learning style. Those students that responded negatively to these questions predominately possessed either
a Diverger or Assimilator learning style. Hence it is evident that students possessing a Converger or
Accomodator learning style experience less difficulties in using the integrated COBOL environment
compared to students possessing a Diverger or Assimilator learning style.

Conclusion

From the study conducted it is evident that the COBIE system has helped novice programmers overcome
some of the difficulties experienced with tsing the RMCOBOL system. Certain improvements have been
made to COBIE based on the feedback obtained from. students. Currently the COBIE system is being used
by first year students to write COBOL prograins.

COBIE will be extended further to provide a debugging and documentation system. Finally a number of

192 Saicsit ‘96

mec'hanisms (as.out]jned a?)ove) such as the use of syntactical templates and visual programming
environments will be examined in order to obtain a means by which these novice programmers can be

assisted to program in COBOL.
References
[BARS84] - Interactive Programming Environments, David R. Barston, Howard E. Shrobe,

Erik Sandewill, Mcgraw Hill, 1984.

[DONAS5] - Integration Techniques in Cedar, James Donahue, Sigplan Notices, Vol 20,
No 7, July 1985, Pages 265 - 286.

[FINN90] - On Learning Styles and Novice Computer Use, G.R. Finnie, Quaestiones
Informaticae, Vol 5., No. 1, 1990, Pages 1- 10.

[GLIN9O] - Visual programming Environments - Paradigms and Systems, E.P. Glinert,
IEEE Computer Society Press, 1990.

[SCHR93] - An Integrated Prolog Programming Environment, U. Schreiweis, A Keune, H.
Langendorfer, ACM Sigplan Notices, Vol. 28, Part 2, 1993.

[SWEES5] - The Mesa Programming Environment, R.E. Sweet, Sigplan Notices, Vol. 20,

No.7, July 1985, Pages 216-229.

d Saicsit ‘96 193

THE DESIGN AND USAGE OF A NEW SOUTHERN AFRICAN INFORMATION
SYSTEMS TEXTBOOK.

G.J.Erwin’
and
C.N. Blewett’

! Business Information Systems, Faculty of Commerce and Administration, Department of Accountancy,
University of Durban-Westville, Private Bag X54001, Durban, 4000. Phone: (W) (031) 820-2435 Fax: (W)
(031) 820-2429 e-mail: erwin@)is.udw.ac.7a

? Business Information Systems, Faculty of Economics and Management, Department of Accounting and
Finance, King George V Ave., Durban, 4001. Phone: (W) (031) 260-2161 Fax: (031) 260-3292 e-mail:
blewett@bis.und.ac.7a

Abstract

Changes in South African society have brought about changes in the background of student audiences
and these have stimulated a review of the areas of governance, syllabus, curriculum, teaching methods
and research in educational institutions. In this paper we describe our revised approach to teaching of
(Business) Information Systems/ Computer Studies / Business Computing, and the first-year textbook
which we created to support this new approach. We discuss the "product-driven" and "problem-driven"
arrangements of current textbooks and report on a survey of Business Information Systems students
using the new textbook at the University of Durban-Westville. We discuss problems with foreign
textbooks and current teaching methods and describe the structure and content of an Information Systems
course designed locally. We conclude with recommendations on teaching methods, textbook design and
support material which are appropriate to the new South Africa.

Keywords: textbook design, education, Information Systems
Computing review categories: K32
Introduction and Background

“There are ever-fewer white students and the trickle of Africans has become a flood. Universities (ef al, added by
authors) must adapt to the needs of a new and very different clientele.” (Moulder, 1994).

The student audiences at, for example, University and Technikon, in South Africa are rapidly changing. Moulder
discusses how the change in student audiences requires us to;

1. alter the “composition of student, academic and administrative bodies”; the governance structures of
our institutions.

2. change the syllabus by moving away from “geriatric, northern hemisphere cultures”.

3. change the curriculum, “the whole way in which teaching and learning are organised”.

and

4. change the “criteria (for) research”.

In other words, Moulder is summarising the areas of attention for the transformation of our educational efforts.

This paper describes work we have done to address the syllabus issue, with our new textbook (Erwin and Blewett,
1996), and the curriculum issue, by reshaping the presentation of Information Systems to be problem-driven , items
2 and 3 above. We begin by describing the design of current Information Systems textbooks, and the problems
which students face using foreign textbooks. We then present the features of our new Information Systems textbook
which address those problems, discuss the problem-driven approach to teaching and learning, compared with the
product-driven approach, and, after reporting on a survey of Information Systems students using our new textbook,
draw some conclusions about the success of the textbook and the problem-driven approach. These issues also apply
in business, and at primary/ secondary schools, but, this paper does not address those areas, except in passing.

Saicsit ‘96 ' 195

Many new students will be and are educationally disadvantaged, under-prepared and unprepared. These students
come from very different backgrounds to previous entrants to our tertiary institutions. The growing penetration of
sectors of our society by Information Technology (IT) means that students will encounter courses in subjects such
as Business Information Systems (BIS) and Computer Studies. Many of these students “are studying in a foreign
language” (Moulder, 1994). Teaching methods and materials are under review by many educational institutions.

Some Notes on Current Textbooks and Student Learning

Currently prescribed textbooks for Information Systems / Computer Studies courses at Universities, Technikons,
Technical Colleges and other educational institutions often bear little specific relevance to South African society.
They are illustrated with foreign-based examples, lack reinforcement of the material suited to educationally
disadvantaged readers, and have inappropriate "chunking" and sequencing of material. Such textbooks can create
learning problems for many students. Our teaching experience shows that current American/British textbooks
assume certain experiences and mstitutions in society, leaving our students confused between fundamental material
and the mechanisms of a particular society's structure. Furthermore, American/British textbooks present material
in a sequence which is much more for the author's and course leader's convenience, than for the student's. Textbooks
are often designed for the approval of other academics, rather than to improve the learning process of students.
Academics / course instructors are already familiar with the material in a textbook. Their main concern when
assessing a textbook is often the organisation of the material therein, rather than the impact of the material on the

learning student. This approach does not recognise the difficulties students have with material on first meeting it.

The success of a student's learning process depends, inter alia, on the method of initial exposure to the material and
progress through it without jolts or obstacles. Subsequently, after first-level comfort is achieved, there will be an
(overlapping) formal learning stage which a student returns to the material, for example, for examination
purposes. There is a two-stage process, with much overlapping of stages, as new topics are encountered. Every topic
has an initial stage, followed by a more formal stage. The initial learning stage significantly influences the outcome
of the more formal learning stage. Existing textbooks have been arranged largely to suit the more formal type of
student learning which occurs when preparing for exams / tests, not the initial learning that occurs when a student
first encounters a topic.

Production of a New Textbook

We believe serious learning problems emanate from the use of inappropriate textbooks, (and other media, methods
and material) and that these problems will grow substantially, unless addressed. As in any situation, there are three
major options available (Erwin and Blewett, 1996): namely, do-nothing, improve existing methods, or adopt new
methods. Tn the early 1990s, we observed the mounting difficulties our students were having with IS material and
teaching methods, and we decided we could not do-nothing. We could attempt to improve our existing methods and
material, by piecemeal attention to many different areas, or we could go “back to the drawing board” and address
the problems we were facing by building new materials and methods. Therefore, after some months of planning and
discussion with colleagues and others, we wrote and published a new type of first-year Business Computing /
Information Systems textbook (Erwin and Blewett, 1996) to reduce learning problems associated with foreign
textbooks. We incorporated our new textbook into an Information Systems course using problem-driven methods.
In these two ways we hoped to introduce material better suited to our student audience, and offer better teaching
support as our new student audience emerges. Tn (Moulder, 1994)’s phrase, we are “Riding the Wave”, not being
swamped by it.

Target Audience

We aim our textbook at 1st. Year University, Technikon, Technical College students of Business Information
Systems (BIS), Information Systems (1S), Computer Studies, Information Technology, Computer Management,
Business Computer Science, Business Data Processing (BDP), Commercial Computer Science, Management

Information Systems, and so on. The book also caters for business people, with little or no computer experience,
who wish to improve their computer literacy and want to understand the process of computerisation in a business.

196 | | Saicsit ‘96

Objectives of a Textbook

A (first-year) textbook can be constructed for one or more of a variety of objectives. These objectives include:

to cover the field

to be up-to-date with latest research findings

to expose principles

to provide drill and practice

to encourage interest in the subject

to cover a specific set of topics, often as a basis for professional work
to introduce core topics in a comfortable style

to provide a variety of (edited) sources for student growth
and so on.

* O* ¥ O * O H ¥ ¥ ¥

We be]ieve”thgt, at first year (and novice) level, the appropriate objective of an IS textbook is a mixture of “expose

g.nnmples , “encourage interest in the subject”, “cover a set of topics, ... as a basis for professional work” and
introduce core topics in a comfortable style”.

Let’s look at some of the problems we recognised with existing available textbooks and teaching methods, and the
approach we took to address those problems. ,

Summary of Existing Problems

‘Here 1% a summary of major problems we encountered with existing textbooks. We discuss these problems and our
‘solutions” in the sections that follow.

Existing Business Computing / Information Systems textbooks are:

: foreign: . aimed at "literate", non-South African, audience

: product-driven: dg:scribg how? Often to the exclusion of why and when?

i glossy: ' distracting and unreal photo galleries; sophisticated applications

: ;upf:rﬁclalz not useful for the practice of_business; stop at first level, even for core topics

. ormg/dens«.?: ngt rcaq and !earnt; use passive voice; assume good literacy, back-end Appendices.

: comprehensive: distracting Wlde coverage of most-recent software/hardware versions

; up-to-date: un-necj‘essanly so, to “prove” usefulness to a literate audience as an up-to-date text
targeted: at the instructor (his preferred chunks of knowledge), not the student

Existing textbooks have:

* good coverage of required material

: emphasis on PCs without ignoring other types of computers

well-organised exercises and summary material
However, in our South African situation, existing textbooks suffer from :

inappropriate context

inappropriate examples

lack of reinforcement

inappropriate "chunking" and sequencing of material
inappropriate use of language

poor placement of Appendices

and

an unrealistic element.

* ¥ K K ¥ ¥

We now consider each of those problems in turn, with the use of examples, and, after each discussion, immediately
discuss our approach to each problem.

Saicsit ‘96

197

Problem: Inappropriate Context

Existing textbooks describe the society and events of a first world society, rather than our m'i‘xed first/third world
society. For example, an (American) textbook on Computer Security starts off by claiming "You seldom hear of
bank robberies these days!" (Pfleeger, 1989, p.1). American society has largely moved to the use of credit cards
and other forms of cashless transactions. This reduces the availability of cash as a target for robbers. In South
Africa, bank and building society robberies are so common that we hardly notice them anymore!

Almost all American textbooks refer to USA laws, such as The Freedom of Information Aet: a law giving citizens
the right to have access to data about them gathered by federal agencies; Fair Credit Reporting Act; Federal Privacy
Act and so on. For example, “The major picce of legislation on privacy is the Pﬂvacy Act of 1974 (PA74), enacted
by President Gerald Ford.” (Stair, 1992, p. 632). (Stair, 1992) is an American textbook,. s0, our relatively young,
Jocal, novice reader can make little sense of this sentence in South Africa, where the ‘President’ . is currently Nelson
Mandela. This example from Stair confusingly refers our students to a forei gn history and forez gn le gzslatmn at an
early stage in the learning of Information Systems “Principles”. South Afncsm students using Stair Yvnll .lea.m about
the issues of privacy in the confusing context of unfamiliar and (largely) u-relevan? Government institutions apd
regulations. Material of this type is important in order to expose legal aspects of the issues of privacy an'd security,
but the context in which such textbooks do this makes the topic very difficult for novice students. See (O'Leary and
Williams, 1985, p. 543) for a similar example. Our textbook, on the other l}and, as one example, refeps to South
African issues, such as “The government may introduce new laws which require strict control of the business, such
as the calculation and claiming of Value Added Tax (VAT).” (Erwin and Blewett, 1996, p. 21).

Another example of inappropriate context (for South African students) is ... a new type of robot developed at the
MIT Mobile Robotics Laboratory in Cambridge, Massachusets.” (Stair, 1992, p. 354). Tpere are many bleckages
for our students here, including the “MIT”, the “Cambridge”, and the “Massachusetts”. A similar inappropriate (f(’),r
South African students) example occurs in (Stair, 1992, p. 217), namely, “Reeearchers at Aj“ & T Bell Labs ...”.
Our textbook, on the other hand, uses an example such as “For example, ... rainfall figures in Cape Town help to
plan the construction of a new dam.” (Erwin and Blewett, 1996, p. 212).

Fxisting textbooks also assume wide availability and accessibility of computer equipment. For exan_)ple, one
textbook offers a "Teaching Tip : Take off the enclosure on a microcomputer processor to expose the circuit boa-rd.s.
Point out the motherboard, memory, add-on boards, disk drives, and so on." (L.ong and Long, 199Q, p‘.60). This is
not only unrealistic with Information Systems class sizes of hundreds, but is normally forbidden by institutions, and
is impossible for distance teaching.

In general, the level of computer literacy, availability and personal, computer comfort in South Afﬁca seems far
lower than in the USA and UK. The content and style of a textbook needs to recognise the characteristics of its target
readership, usage and society.

Inappropriate Examples

Our experience at teaching in University, Technikon, Damelin Management and (;omputer Schools, industry and
commerce, and other institutions has shown us problems when students leam with mgpproprlate textbooks and
examples. In textbooks, such as (Capron, 1990), the beautifully printed picture gaﬂeqes, glossy print and USA
examples immediately present credibility problems for our students. The examples in books such as Capron,
become a distant, almost dream-like fantasy collection when read by many of our.students. Capren-type e).(am.ples
simply convince many students of the unmanageable sophistication and complex1ty of eomputensed appllca.tloms,
reducing their own confidence in being successful with computers. A confident, identifiable siart to learning is
needed. Further texts and/or study can subsequently introduce complexity and breadth.

Another example of an inappropriate example appears in (O'Brien, 1988, p.21). The illustration (photo) for an
optical scanning "wand" is of a mysterious product called "Dr Pepper". On!y people who have"travelled to' lﬂle U S[fS;
(or been very observant while watching American TV situation comedies) will know that "Dr Pepper” 1s a so
drink, and not a medicine or a brand of Mexican food.

A similar example appears in (Stair, 1992, p. 152), namely, ... which leads to the man'ager’s SSN.(098-40-] 370)
in the Department table.” Many of our students have no idea what “SSN” is, so this example is much more a
blockage to learning than an aid. An equivalent example in our textbook is “Another way to think of a byte 1s to
consider eight soccer referees.” (Erwin and Blewett, 1996, p. 256).

198 | Saicsit ‘96

The examples used in our textbook are local examples. There are frequent references to Durban, Cape Town and
other Southern African locations and issues. This removes the problem of students firstly having to comprehend an
example before even attempting to understand the material. The examples in a first year broad-coverage textbook
need to be familiar and incremental in nature. Examples should begin at a comfortable (but correct) level, then
expand to incorporate other aspects, such as problems of size and geographic dispersion. Fundamental concepts
should transfer from small scale operations (such as a retail store) into medium (such as a sporting club) and then
into larger manufacturing and financial services businesses (such as a bank, or a motor car manufacturer).

Problem: Lack of Reinforcement

A common student complaint is that the course instructor delivers the course material too quickly. Other complaints
include little reinforcement (reminders) of the material and examples are usually big business, first world orientated.
Many textbooks are tightly edited to remove any repetition. Such removal of repetition causes difficulty for students
who do not read the book sequentially. In our experience, no student reads a book sequentially. In fact, even
courses are not usually presented i the same sequence as the textbook. We recognise this “non-sequential” attribute
of our courses and repeat important material in several places. For example, we show the components of a transfer
(Source, Destination, Channel and Protocol) in different parts of the book (Erwin and Blewett, 1996, p. 238, 268,
579, 588, 607). Each repetition is in a different situation and encourages students to see the application of
fundamental material in different areas, by reinforcing the presence of a major principle or framework.

We saw that students often forgot the meaning of abbreviations. So, throughout the book, we explode abbreviations
into their full wording, This means that a student will no longer confuse the Bank for International Settlements (BIS)
with Business Information Systems (BIS). We also use acronyms liberally to assist memorisation of key points. For
example, a student remembers the seven Critical Computerisation Questions (CCQs) (to assess whether a
computerisation investigation should proceed) by using the acronym CRITICAL.

A textbook should reinforce other course material as well as infernally reinforce the book itself. Ideally, the student
also has his/her textbook material reinforced by events and institutions in his/her society outside the class, as well
as within the educational mstitution. In existing textbooks, this aspect is very well handled for American (and other
first world) students by reference to well-known institutions and practices in their society. Such books provide no
reinforcement support of that type for our students in Africa. Our textbook refers to local institutions, such as Eskom
and Telkom. In addition, our textbook provides “Interactions”. Many Interactions require the student to visit
different parts of society, such as a bank, soccer club, pharmacy, supermarket and so on. These visits include a
questionnaire which helps the student to observe the meaning of words from the textbook in the real world.

Problem: Inappropriate "chunking” and Sequencing of Material

"Chunking" is the choice of which material goes into various chapters, episodes and sections. For example, Capron
(1990) chunks a chapter on "Database Management Systems". This Chapter first describes what Database
Management Systems are, followed by uses for a Database Management System. This sequence of exposure of the
material is product-driven. A product-driven approach describes the content of a product; what it is, and how it
works. Although product-driven sequence can be useful at a later, more formal learning stage for students, it does

not properly assist them through the initial, formative learning stage. Our textbook recognises and caters for both
stages of learning,

I
1

Our textbook has a problem-driven approach. A problem-driven approach describes a situation which, as it
develops, requires the use of a technology, product, method or design which appropriately services the problem
situation. The problem, once recognised, identified and measured, drives the use of the product for solving the
problem. A problem-driven approach is also a requirements-driven approach. In our textbook, we introduce
problems a business faces, such as stock control and payment of suppliers, then, may draw an analogy between
existing manual methods and a computerised approach. Database Management Systems are shown to be an
appropriate technology (product) for a certain class of problems, rather than a product to be described per se. The
problem-driven approach is then supported by Structured Material to assist with learning core topics and the
required detail for examinations and tests. Our textbook provides the proper chunking and sequencing of material
to assist the student when learning concepts, and structured material for later use, such as in examinations. This
approach addresses a common question from students, namely, "I know what it is and how to use it, but why or

when do T use it?". Later, we discuss how the problem-driver approach drives the design of an Information Systems
course, not just the textbook material.

Saicsit ‘96

199

Consider another example of the product-driven chunking compared with the problem-driven chunking. (Stair,
1992) includes “Chapter 3: Hardware: Input, Processing and Output Devices”. This Chapter covers as a “chunk”,
the topics of Computer System Components, CPU, Primary and Secondary Storage, such as Tapes and Disks,
Classifying Computers, and Input and Output Devices. Chapter 18 of Stair includes a section on “backup
procedures” associated with “Information and Technology Management”. This chunking and sequence of
presentation is the product-driven approach, because it describes components and not applications within a
business. Our problem-driven approach, covering the same material as Chapter 3 of (Stair, 1992), begins with a
Story in “Episode C2: Computer Disaster Planning.” This Story continues the events in the computerisation of a
supermarket, owned and managed by Mr Makhathini, in Africa. As a result of a disaster which destroys Mr
Makhathini’s computer, the issue of backup procedures, and copies of data and software arises. Discussion of
methods of backup follows, and then a description of magnetic tape principles occurs in the context of a problem
to be solved. Now, in this Story, and because of the business problem, for the student, the calculation of the capacity
of a magnetic tape becomes important and relevant, not just an exercise in arithmetic. Our textbook has no single
section which describes hardware and computer components. The relevant descriptions occur in contexts in which
such component descriptions are relevant and needed. A student learns about components and products at the time
the information is needed. Descriptions also occur at several different levels of detail. There is a first level
description, for assimilating the overall concept. Then, there is a more detailed description in a separate sub-section.
This style recognises that a student needs to be comfortable at an overall level first, then, as problems arise the more
detailed description is more comfortable and meaningful.

Our chunking arrangement and sequencing mean that students do not regard concepts as strictly compartmentalised.
Concepts are introduced in an appropriate problem situation and often reappear in later Episodes. For example, the
topics covered in (Stair, 1992, Chapter 3: Hardware: Input, Processing and Output Devices) need approx. 30 pages.
(Erwin and Blewett, 1996) covers the same material as (Stair, 1992, Chapter 3) in over 100 pages, namely, Storage
Devices, pp. 105-112; Principles of Disk Operation, pp. 211-228; Data Representation and the Machine Cycle,
pp. 245-298; Input Devices, pp. 355-364; Output Devices, pp. 473-484, and Magnetic Tape Principles, pp. 563-
574. The Stair chunking suits the purpose of arranging like-items together. The Erwin and Blewett chunking
arranges material as a flowing, natural story, then, as problems and situations arise which need computer
approaches, the textbook describes and explains the material to apply that technology. This chunking means that
the introduction of hardware is part of problem solutions. For example, students learn about Output Devices in the
context of Office Automation and Word Processing. They learn about Magnetic Tape Principles in the context of
disaster and backup issues.

There is so much material available in the IS field that a student can become confused about his/her position within
the material. To reduce this problem, we introduced a uniform framework for every Episode in the textbook. No
ofher textbook known to us (in this field) has such a uniform framework in every Chapter / Episode. All other
teibooks known to us in this field present each Chapter in a separate framework, or arrangement. Each Chapter’s
maicrial is arranged in its own special way. Course instructors have no difficulty adjusting to different styles of
pieseniz son in each Chapter. Novice students struggle with such a scheme. Every Episode in our textbook has the
following format / framework:

Story -> Transition -> Structured Material -> Infobyte

Every Story unfolds in the STAIR framework, namely:

Stimulus: events or circumstances which lead to discussion of a business problem

Trouble: exploration and identification of business problem(s) as a result of the Stimulus
Approach: discussion of various approaches for resolving the identified business problem(s)
Implementation: actions to install the chosen Approach

Review: a look back at the Implementation and its success/failure.

The Transition after each Story is a summary of the Business Computing principles and events in the Story, and
an anticipation of the formal treatment of material to follow in the Structured Material.

The Structured Material follows the Transition. Struetured Material is in the KAIR format. namely:

Knowledge: facts and techniques

Awareness: importance, role, potetitial and widespread usage
Interaction: practical exetcises, direct touch, visits to the real-world
Reality: business implementatiot {ssues.
200 Saicsit ‘96

) Sy e

The KAIR elements make up the four parts of Computer Literacy and Competency.

To further provide the student/reader with a ‘road map’ through the material in the book, the Knowledge part of
KAIR in Structured Material is split into COURSE elements, namely:

Complaint: opportunities and/or difficulties which lead to a business investigating a specific topic
Overview: the mainstream content of the topic

Usage: how to use this technology

Resources: resources associated with the use of this technology

Strategy: options and approaches

Examples: illustrations of the use of this technology in various levels of business

After each Structured Material section is an Infobyte. An Infobyte provides background, and further detail on
Business Computing topics. We aim Infobytes at students requiring more than a first-level understanding of a
Business Computing topic. Typically, this will be an Information Systems major student, an Information Systems
support person and, of course, an Information Systems developer. For example, Infobyte I3 appears at the end of
Episode A3 and covers Data Representation in a Computet and the Machine Cycle.

The uniform framework in every Episode means that a student can learn about various topics in a standard way,
and begin to see the common aspects of topics such as Database and Spreadsheets. To further assist the student, we
also devised a framework for learning about the usage of various packages, components, and so on. This is the
SKRAP framework, namely:

Setup: actions to establish the initial use of a package, data and data definitions for an application
Keep: actions to preserve /save / keep work / data / software established in the application
Retrieve: actions to retrieve / find / call back for use, the data / definitions in an application
Alter: actions to alter / amend / change data and definitions in the application

Print: actions to list / inspect / print / display / query data and definitions in the application.

This SKRAP framework considerably assists students when approaching a new software package or application.
The SKRAP actions have to be supplied by every package / application. No application can exist without providing
the SKRAP actions. The student can now search a way to perform each SKRAP action, and, when (s)she has
conquered SKRAP, (s)he will be able to move on to more complex variations of those basic actions. Initial
comfortable usage comes from pursuing SKRAP.

The book has three major Levels arranged in Sections: A, B and C.

Level A contains Fundan‘rlentals:“ computers, hardware, soﬂwére, internal computer principles, business
requirements, computer selection, and so on. Some detailed Fundamental material appears elsewhere. For
example, Magnetic Tape Principles appear in Infobyte I8 at the end of Episode C2 in Level C.

Level B covers major Applications areas; Database, Spreadsheet (DSS) and Office Automation.
Level C covers Implications of using computerised Information Systems, such as backup, disaster

recovery planning, networks, Information Systems Development (ISD), package software, and so on.

In conjunction with Infobytes, a course instructor or a novice reader can choose a selection of material to suit various
depths and lengths of courses of study. The repetition of some material at different Levels and within Levels assists
such a customised choice.

Problem: Inappropriate Use of Language

Every subject has its own jargon and specific terminology. Any course in the subject includes the acquisition of this
terminology. However, when a textbook uses difficult, hard-to-read language a student has understanding problems.
Many textbooks use passive voice to €xpose material. Passive voice is an atiribute of “verbs in sentences in which
the grammatical subject is the recipient of the action described by the verb” (Hanks, 1988, p. 833), as in ‘Total
revenue from soccer tickets is calculated by the computer application.”. Active voice is an attribute of “verbs used
to indicate that the subject of a sentence is performing the action or causing the event or process” (Hanks, 1988, p.
11), as in “The computer application calculates total revenue from soccer tickets.” Our textbook almost exclusively
uses active voice, because active voice presents concepts in a more ‘natural’ way and contributes to the easy-to-read,
soft language, attribute of a textbook. This style can sometimes appear to make the content elementary, because the
wording is so simple. However, our treatment of material is usually deeper than American and Briish textbooks.

Saicsit ‘96 201

Material in existing textbooks is often dense and boring with long passages of unrelieved text. Many students find
that a textbook presents material in a particular way, and then moves on to the next topic. Our experience is that
many students understand material better when we present it to them in several different ways. That seems to be
one of the main objectives of lectures. However, in our textbook, we introduced a unique concept, known as the
Wise Guru. This ‘person’ is a device to break the text into smaller sections by looking back on material and
describing its contents in a different writing style, different font, and with different words. The Wise Guru also
points out important material and common topics for examination questions to students.

Because we live and teach in Africa, we were concemed to produce an African-flavoured textbook which recognised
both our strengths and weaknesses. We wanted to present the student with a ‘comfortable, but correct’ introduction
to fundamental concepts. To do this we divided the book into Episodes, rather than Chapters, and wrote a series of
Stories. Every Episode begins with a Story. We wrote the stories in conversational, novel-style English. Read as a
whole throughout the book, the Stories cover the first year of computerisation for Mr Makhathini’s supermarket
business. The Story format, and language, enable us to lead the student into important issues in an interesting way.
The Stories contain drama, action, discussion, human difficulties and humour. These Stories allow comfortable
assimilation of concepts at initial learning stage and are excellent pre-reading for lectures, tutorials and discussion
groups. Plans are underway to offer these Stories, and the Structured Material, as a series of video Episodes for
presentation to classes, on educational TV, and so on. This medium can assist course instructors with presentation
of material.

Problem: The Placement of Appendices

Information Systems textbooks often contain Appendices at the end of the book with detailed, off-the-mainstream
topics. Our experience is that students often regard such Appendices as unimportant. In our textbook, we introduced
the concept of an Infobyte. An Infobyte is a section at the end of each Episode which contains the next level of
detail after the material in the main part of the Episode. For example, in Episode C2: Disaster Planning, Infobyte
I8 contains two Nybbles. The first Nybble is about Backup Principles, and, the second Nybble is about Magnetic
Tape Principles. The Infobyte approach keeps detail out of the mainstream topics of the book, and places the
detailed material adjacent to its (commonly-applied) area of application.

Problem: Unrealistic element

Much of the material presented in existing texts conveys the idea to students that computerisation is an almost magic
process which can improve any given situation with little effort or mistake.

Existing textbooks describe smooth success for computer implementations following ideal sequences of activities.
Real world experience is different, and our textbook recognises this. Our book discusses plans, options and issues,
and recognises that, in reality, not all will go as planned. Important messages in the book are "It's not easy to
computerise”, and "Not everyone is keen about computerisation”. But, it is manageable and achievable. The novice
Mir Makhathini has some computerisation problems, such as staff resistance, and in discussion in our book, various
approaches are covered. Mr Makhathini fails at some of his attempts, but the student learns from such setbacks.

We retain a realistic treatment of computers and computerisation throughout our entire book. Our characters raise
real life issues, both as people going through the computerisation process, and from the Wise Guru. The Wise Guru
is a character (outside Mr Makhathini's family and business) who talks directly to the student reader of our book.
The Wise Guru helps the student reader, by offering advice, and comments on issues as Mr Makhathini makes
decisions or mistakes. The Wise Guru advises about important issues such as examiners' approaches to topics. The
Wise Guru has empathy for the student in the learning situation. Students reading our book will not feel that they
are a third party reading dry facts presented to them by some well-learned authors. Rather, through the use of Mr
Makhathini's relatives, staff and friends, and other aids such as the Wise Guru, the students reading our book should
relate to the development and learning experiences of Mr Makhathini.

Content of our Textbook

There is no new information in our book. The level of out material is first level, novice level; assuming no previous
contact with computers, or business. Our frameworks and approach are new in order to address the problems
discussed above. The textbook contains # full syllabus to support a one year, or shorter, Informatiuon Systems
course.

202 Saicsit ‘96

Implementation of problem-driven approach at University of Durban-Westville (UDW)

The textbook (Erwin and Blewett, 1996) is prescribed for Business Information Systems I (BIS1) in the Faculty
of Commerce and Administration (Department of Accountancy) at the Unversity of Durban-Westville (UDW) in
1996. Previously, (Stair, 1992) was prescribed, except in 1995 when no textbook was prescribed. Stair had become
so inappropriate that a decision was taken to issue notes, rather than use Stair. Some of the material from our
textboqk was used in BIS1 in 1995 as test exposure. BIS1 is a second-year course for most students, since BIS at
UDWlns currently a two-year major. BIS1 is a year course, and is not yet modularised/semesterised. UDW expects
to begin a three-year IS major in 1997. Almost all BIS1 students are registered for a B. Comm. or B. Acc. (towards
becoming a Chartered Accountant) degree, with the rest being B.Sc. students. BIS1 (wholly or partially) will
eventually form a service course for most UDW students.

Adopting a problem-driven textbook means that large parts of formerly product-driven material has to be adjusted.
At UDW, BIS1 was reorganised in 1996 to match the problem-driven nature of the textbook with a problem-driven
approach to the whole course. Using a product-driven textbook in a problem-driven course is awkward. And vice-
versa. It is not a successful strategy to change the textbook to be problem-driven, and then continue to lecture and
organise the rest of the course in a product-driven way.

Here are some of the aspects of BIS1/UDW course delivery which supported the problem-driven textbook:

1. Before lectures commenced students had to register on a workstation in the BIS Information Centre (IC)
with their own personal details, and some other data re courses taken, and so on. This forced (most)
students to view and use the IC. (BIS does not have a Lab! Labs are where chemicals mix to form
explosions. BIS has an Information Centre, with the traditional workstations, printers, cables, magazines,
and so on.) The students’ personal data was then used, by the students, as a base for appending more data,
and then as a means of discussing data, information, integrity of data, and so on. Students had access to
overall class data as well as their own individual data. Students saw the problems of integrity,
confidentiality, and so on, before they realised they had seen a database system or the software for
flatabase (dBASE 1V), or had any lectures on database systems. Real-life problems showed them the
issues. The lectures and textbook helped students to make sense of their experience. Students were
encouraged to use the SKRAP framework described above.

2. ‘ All student work has to be submitted in a personal “bin” on the BIS LAN (Novell). No handwriting is
accepted. As part of the problem-driven approach, BIS students must use the technology that they are
being taught.

3. No tutorials were held, partly due to lack of staff. In licu of tutorials, BIS students attend Personal

Development Programs (PDPs) where the practical work and issues from lectures are discussed in groups
of about 20, supervised by an academic. “Tutorial” is a poor term to describe the process of “comfort-
generation” that we sought early in the course, so we sought a new term. The use of words to describe
course items is critical to the formation of student perceptions about the course. PDPs were optional.

4. “Interaction”s from the textbook were used for practical work to send students out to the real-world.

5. Students also had practical work in the BIS IC (Information Centre). To begin with this work used the

students’ personal data from each individual in the class. Issues of confidentiality, accuracy, integrity, lies,
errors in software/network, non-cooperation and so on, soon arose for discussion at PDPs and in lectures.
Novice students find it difficult to relate to business organisation and control issues. Dealing with their own
data, seeing the problems there, and moving on to more general approaches and concept-learning, was a

comfortable starting approach. Our approach is to offer “Work Performance Improvement Courses”,
rather than “Computer Courses”.

6. The style of test and examination questions altered. Students were coached in the meaning of “Describe”

and ‘D@ms”, amid fierce resistance from maty who wanted the BIS1 course to be run according to their
perception of a “computer course”, namely, questions on keyboard activities. Tests and examinations do
not examine keyboard activities. BIS1 test and examination questions tend to begin with a scenario, such
as “You are the owner of a supermarket, and ‘Outline the steps you would take to implement a stock
control system, including the use of a computer. Justify your steps at every stage.” Or, “During your BIS1
course, you were asked to visit a bank, or a car manufacturer, or a building society, or ..., and report back
on their use of spreadsheets (or networks, or ...). Describe your visit, in the context of the spreadsheet

Saicsit ‘96

203

(network, ...) usage you found, and discuss what you found using material from your BIS1 course. Extra
marks are awarded for a systematic answer.” Students do not like these types of questions, but, we believe
that this aspect of the problem-driven approach is an excellent way to build up confidence and competence,
and to prepare students for the workplace. IT issues are always related to, in fact, flow from, problems.

7. No multiple-choice tests or examination material are used. We believe such material is more a langnage
and semantics exercise rather than a test of knowledge. Such material encourages piecemeal learning, and
remembered phrases, at the cost of students’ inability to describe or discuss an issue/problem.

8. All practical work and Interactions were DP requirements.

The problem-driven approach for the whole course has been partly diluted/distorted by the large number of
disruptions to the academic programme at UDW in 1996. However, we feel that the problem-driven paradigm will
be a much more successful one than the previous product-driven style.

Survey of BIS1 Students at University of Durban-Westville (UDW)

The survey was conducted during a scheduled BIS1 lecture period in a lecture hall on 18 June, 1996. Approx. 200
students are registered for BIS1, and 131 respondents completed the “Questionnaire” form (Appendix A). At the
time of the survey, UDW had only just re-opened after a closure for almost 6 weeks due to unrest on campus.
Lectures were still returning to normal rhythm at the time of the survey.

A special section of the Questionnaire form referred to the textbook. Other aspects of the course were also covered,
but, only results from the textbook section are reported here. Not all respondents replied to all items on the
questionnaire. Each respondent assigned a RATING to attributes of the textbook on a scale of 0 to 10, where:

0: TOTALLY UNSATISFACTORY
5. SATISFACTORY
10: EXCELLENT

Some respondents, apparently about 10, interpreted this RATING range to mean that they could only use exactly
0, 5 or 10. The remainder appeared to award ratings throughout the range 0 to 10. Several answer forms were
excluded due to obviously invalid answers. For example, answer 1 = 10, answer 2 = 9, answer 3 =8, down to
-10 then start over at 10.

Table 1: “UDW Survey Results for the Textbook 18/6/96” below, shows the results of the textbook survey.

204 Saicsit ‘96

The first column in Table 1 shows the “Attribute” rated. For example, “Easy-to-read”. The second column shows
the Total Number of Ratings (Respondents) for that attribute. The third column, headed “<5 ", shows the
percentage of Ratings less than 5. In other words, the % of respondents for this attribute who rated the attribute as
“less than satisfactory”. The fourth column, headed “>=5", shows the percentage of Ratings greater than or equal
to 5. In other words, the % of respondents for this attribute who rated the attribute as “satisfactory or better”. The
fifth column, headed “>=7", shows the percentage of Ratings greater than or equal to 7. In other words, the % of
respondents for this attribute who rated the attribute as “very good or better”. The sixth column, headed “>=9",
shows the percentage of Ratings greater than or equal to 9. In other words, the % of respondents for this attribute
who rated the attribute as “almost excellent or excellent”.

Table 1: UDW Survey Results for the Textbook 18/6/96

Attribute Total Number <5 % >5 % >=7 % >=9 %
of Ratings “less than “satisfactory “very good “almost
(Respondents) | satisfactory” or better” or better” excellent or
excellent”
Useful 128 9 91 63 41
Informative 128 12 88 62 41
Interesting 128 17 83 60 36
Understandable 128 10 90 71 44
Wise Guru 128 14 86 65 37
Easy-to-read 128 8 92 74 47
Well-organised 126 11 89 63 37
content
Ease of finding 126 13 87 35 25
material
Content 126 10) 90 60 29
arranged for
effective
learning
The “Story” at 128 20 80 61 38
the start of each
Episode
The style of 126 11 89 67 44
language used
Examples used 126 8 92 60 40
in the textbook
Level of 113 18 82 22 7
Material (0 if
elementary
level, 10 if much
too complex) i
OVERALL 122 9. 91 57 27
RATING FOR
THE
TEXTBOOK

Except for the Attribute “Level of Material (0 if elementary level, 10 if much too complex)”, the higher the Rating
(the closer to 10) the better the acceptance of and reaction to the textbook by the respondents.

Saicsit ‘96 305

Evaluation of Survey Results

Overall acceptance level for the textbook was very high. 91% of respondents for “OVERALL RATING FOR THE
TEXTBOOK? rated it as “satisfactory or better”, and 57% as “very good or better”.

Below, in Fig. 1 is the graphical, frequency distribution of the OVERALL RATING FOR THE TEXTBOOK
replies. The Y-Axis is the NUMBER OF RESPONDENTS. The X-Axis is the RATING given.

N
(4]

- = N
o (6] o

NUMBER OF RESPONDENTS
o

o

0o 1 2 3 4 5 6 7 8 9 10
RATING

Fig. 1: OVERALL RATING

The specific new features of the book also obtained high ratings. The surveyed new features were “Wise Qmu”,
“Easy-to-read”, “The ‘Story’ at the start of each Episode”, “The style of language used” and “Examples used in the
textbook”. Below, in Figs. 2 to 6, are the graphical, frequency distributions of the RATINGs for thesg new features.
The Y-Axis, in each case, is the NUMBER OF RESPONDENTS. The X-Axis is the RATING given.

=]

n

NUMBER OF RESPONDENTS |
=)

o

c/)50
l—
i
o 40
Z
S
A 30
w
o
%20
i
m 10
=
)
< 9
012 3 456 7 8 910
RATING
Fig. 2: Wise Guru Fig. 3: Easy-to-read
206 Saicsit ‘96

w
(3]

= N N W
g O u» o

—

NUMBER OF RESPONDENTS
=)

o O

N w H an
o o o o

NUMBER OF RESPONDENTS
]

(=}

01 2 3 45 6 7 8 9 10 01 2 3 45 6 7 8 9 10
RATING RATING

Fig. 4: The “Story” Fig. 5: Style of language

S
o

N w
o o

NUMBER OF EXAMPLES
]

01 2 3 4 5 6 7 8 9 10
RATING

Fig. 6: Examples

A textbook is one medium, amongst many, which can contribute to course success/failure. Examination results, and
students’ level of understanding and knowledge, can be other indicators of course improvement compared with
previous material and methods. For the authors, the results are pleasing, although preliminary. There was no
indication of significant rejection of any feature of the textbook, or the textbook as a whole. Several other aspects

of the course received poor RATINGS, showing that respondents did not seem to rate all questionnaire items highly
regardless of the item.

Conclusions y

The problem-driven approach appears to be a satisfactory approach for a first-year Information Systems course,
as well as suited for education of business people.

The provision of a full instructors’ support pack by the end of 1996 (as scheduled), and possibly video Episodes,
could further assist course results. The Overhead Projector slides should be available under Microsoft Powerpoint
Version 7.0 (currently), via Internet for prescribers. Course instructors can then select individual slides for printing
on Transparencies, or retain the electronic slides for display within a classroom with a notebook/laptop computer.
The course instructor can customise the overhead slide material, and other, to suit a local course.

A textbook is not the only medium of teaching in a course. Tutorials, lectures, PDPs, assignments, practicals, and
so on, all make a contribution. But, for many students, the textbook sets the tone and level of the course, and
becomes a safe source of useful knowledge.

Saicsit ‘96 207

Course instructors need to revisit course objectives, course methods and course perspective to determine an

appropriate conceptual model for teaching. Driven by changing student population, changing employer requirements
and changing society, there is a need to reevaluate existing paradigms. Courses should be designed in the best
possible way, and then, the best possible textbook, and other material, used to support the course. We believe that
the problem-driven conceptual model is the appropriate one for the South African future in Information Systems
education. (Moulder, 1994) says we have to “ride the wave” that is rolling over South African society, and education
in particular. Otherwise, we will drown!

Notes

Comments, criticism, suggestions, experiences on any aspect of the textbook, courses, students, and so omn, are
welcome. E-mail addresses for the authors appear at the start of this paper and on the Title Page of our textbook.
The authors invite other institutions and colleagues to share e-mail correspondence, with survey results, course
methods, textbook assessment, and student matters. Even the Wise Guru has an e-mail address. The front pages
of the textbook contain further detail about the design of the textbook.

Acknowledgements

Juta & Co. Ltd. of Cape Town put together a great group of individuals, making up a great team of publishers.
Thanks for your expert assistance and happy production days!

References

Capron H. (1990), Computers - Tools for an Information Age, Second Edition, The Benjamin/Cummings
Publishing Company, Inc., Redwood City, California.

Erwin G.J. and Blewett C.N. (1996), Business Computing: An African Perspective, Juta & Co L.,
Cape Town, South Africa. ISBN 0 7021 3340 X, approx. 700 pages. ,

Hanks P. (Ed.) (1988), The Collins Concise Dictionary of the English Language, 2nd. Edition, Collins,
London.

Long L. and Long N. (1990), Computers, Prentice-Hall, Inc. Englewood Cliffs, New Jersey, p. 60.

Moulder J. (1994), Riding the Wave, in FOCUS, Transformation Section, University of Natal, Durban,
South Africa, Winter 1994, pp. 21-22.

O’Brien J. A. (1988), Information Systems in Business Management, Fifth Edition, Richard D. Irwin, Inc.,
Homewood, Illinois.

O'Leary T.J. and Williams BK. (1985), Computers and Information Processing, Benjamin/Cummings
Publishing Company, Inc., Menlo Park, California. i

Pfleeger C.P. (1989), Security in Computers, Prentice-Hall Inc., International Edition, New Jersey.

Stair RM. (1992), Principles of Information Systems: A Managerial Approach, boyd and fraser
publishing company, Boston, MA.

208 Saicsit ‘96

University of Durban-Westville
Faculty of Commerce and Administration
Questionnaire re Business Information Systems 1 (BIS1)
To a BIS1 student in 1996:
Hi! Here is an opportunity for you to comment on the BIS1 course and its components. Please
answer the following questions as fully and honestly as you can so that UDW can assess the

quality of your BIS education. You do not need to supply your name. You must be a registered
BIS1 student in 1996. Return your completed Questionnaire to Professor Erwin.

Assign a RATING for each component as:
0: TOTALLY UNSATISFACTORY
5: SATISFACTORY
10: EXCELLENT.

OVERALL BIS1 COURSE RATING

TING for BISI course: ~ ——

Usefulnesstoyou ~ ceeeee-
Interestng e
Organised (0 means very badly organised) -------
Difficult (0 means very difficult) ~ -=-----
Relevant to job/work future = eeeeee-
Practical Computer Assignments (PCAs) -------
Hard to understand (0 means very hard to understand) ~ -------
What would you like to see different in BIS1?
What is missing from the BIS1 course?
What did you like MOST about the BIS1 course?
What did you DISLIKFE about the BIS1 course?

BIS STAFF RATING

Overall rating for Mr Webb: S
Overall rating for Ms Oldman (PDPs): -------
Overall rating for Rajiv Lutchman (IC); -------
Overall rating for Prof. Erwin: -——--
Overall rating for BIS Staff attitudes: @ --—--

INFORMATION CENTRE (IC) RATING
Availability of computer(s) = -
Help from demonstrator(s) ~ -------
Hours of opening ~ —emeee-
Access to information about IC usage ~ -------
Overall rating for the IC: -

Appendix A: BIS1/UDW Questionnaire. 18 June 1996. Page 1 of 2

Saicsit 96 | | 209

LECTURES RATING
Usefadl e
Interestng 0 ===
Start and end on time @~ ---——--
Suitable venue @ ===
Overall rating for Lectures: --——--

TEXTBOOK: “Business Computing: An African Perspective by Erwin and Blewett.”

Usefd ==

Informative @ ===

Interesting ===

Understandable S

WwiseGuu 0 mm———

Easy-to-read ==

Well-organised content -

Ease of finding material -

Content arranged for effective learning =~ ----—--

The “Story” at the start of each Episode -------

The style of languageused -

Examples used in the textbook ===

Level of Material (0 if elementary level, 10 if much too complex) — -------

What is a CCQ?

What is KAIR?

What is COURSE?

What is STAIR?

What is MOLEST?

What did you like about the textbook? (Use overleaf if needed)

What did you dislike about the textbook? (Use overleaf if needed)

Overall rating for the textbook: -

Other comments on the textbook:
PERSONAL DEVELOPMENT PROGRAMS (PDPs)

RATING

Useful e

Interestng ===

Start and end on time @~ -

Suitable venue ===

Overall rating for PDPs: -

Number of PDPs you attended: -

Want more/less/about the same PDPs: ~ ------
OTHER COMMENTS on any aspect of BIS1: (write on back of this page):
Are you taking BIS1 towards becoming a CA? --------
If you answered NO, why are you taking BIS1?
**
END OF QUESTIONNAIRE. Thank you for your cooperation. Date completed: ---—---------
Professor Geoff Erwin: Head: Business Information Systems.

Appendix A: BIS1/UDW Questionnaire. 18 June 1996. Page 2 of 2

210 Saicsit ‘96

TEACHING A FIRST COURSE IN COMPILERS
WITH A SIMPLE COMPILER CONSTRUCTION TOOLKIT

Dr. G. F. Ganchev
Computer Science Dept., University of Botswana
P. Bag 0022, Gaborone, Botswana
Phone: (267) 308221, E-mail: ganchev@noka.ub.bw

Abstract

We describe the use of a toolkit designed to support the Compiler Construction course
in the University of Botswana. The toolkit is based upon the principles of simplicity,
modularity and flexibility. Its educational goal is to maintain a balance between
theoretical material and the practical presentation of concepts. We view the students as
active participants in Computer Aided Learning . They actively explore and control the
interactions and monitor the data and control flow in the compilers they build. The
feedback provided by the toolkit's interface helps the students understand where they
are in the compilation process.

Keywords

Computer Aided Learning, Compiler Construction, Scanning, Parsing, Grammar,
Context Analysis, Code Generation, Stack Machine

1. Introduction

In many universities Compiler Construction is no longer a compulsory undergraduate Computer
Science course. Perhaps one of the reasons is the general perception that learning compilers can be
complex, while only a small percentage of graduates will be involved in compiler writing in their
careers. Nevertheless the subject area "Programming Languages” of the ACM Computing Curricula
[ACM-91] includes at least four main knowledge units that are closely related to understanding
compilers. These knowledge units are Representation of Data Types, Sequence Control, Run-Time
Storage Management, and Language Translation Systems.

Our experience indicates that the difficulty in learning compilers does not necessarily lie in the
complexity of the topic itself. The cause is really two-fold: one can be characterized as a problem of
foundation, the other as a problem of presentation:

- Students often lack real understanding of some fundamental concepts that are prerequisite
to the topic. They are capable of obtaining good test scores, but fall apart when asked to apply their
knowledge in practice. Modern compilers are syntax driven. Learning compilers requires some
ease with formal languages and automata. Students should have some initial experience in the
theory in order to understand the current syntax analysis methods, and their impact on the other
compiler components.

- The available introductory textbooks either concentrate on one particular compilation model and
even one example programming language, and then explain their model in a great detail but miss
the general state of the art picture, or have an encyclopedia-like approach covering a range of
methods and techniques, but lacking concrete guidelines for their integration and implementation.

As a first step in addressing these issues, in the UB curriculum we have a separate course in

Languages and Automata. Still, in the Compilers course we try to rely on as simple a set of concepts
as possible. We organized our course with a focus on the concepts that differentiate one compilation
model from the other, and included a closed laboratory component intended to allow the students to

Saicsit ‘96 211

P ——

rapidly build components of compilers for languages that they define. We encourage the students to
explore and choose particular models as described below for each of their compiler components.

2. The Course Contents

The course is designed for undergraduate single major Computer Science students. Our goal was to
maintain a balance between theoretical material and the practical presentation of concepts.

The students taking the course have passed a course in Formal Languages and Automata and a course
in Programming Languages.

After surveying a number of textbooks, analyzing the advanced material in sources as [Hol-90], and
considering the algorithms of several models, we developed our course from the themes listed below.
We were convinced that a set of tools designed to support these themes would provide the students a
meaningful and lasting learning experience not only in compiler construction, but also more generally
in building large software systems.

Our course starts with an introduction to language translation systems encompassing the range from
assemblers to compilers and interpreters with emphasis on syntax directed translation. Then we
present the main parsing, translation, and code generation techniques in use today with many
examples. We recommend two texts for the course - [Wat-93] and [Aho-86], however none of them is
strictly followed, and the lectures contain a lot of material that binds the concepts being presented.

During the first half-semester we cover scanning (case-type and with finite automata) and parsing.
Two bottom-up and two top-down parsing techniques are discussed: mixed precedence, LR(k),
Recursive Descent and LL(k). All are supported by examples and exercises. The second half of the
course concentrates on semantic analysis, run-time storage management (including routines and data
types representation), and code generation (including expression evaluation and sequence control).
The modern emphasis on compiler construction tools is underlined. The horarium is three lecture
hours and one two-hour guided laboratory per week. A laboratory assistant helps the students learn
the toolkit in closed laboratory sessions.

3. The UB Compiler Construction Toolkit

The University of Botswana toolkit differs from other similar systems [Ben-90,Hol-90] by the
intentional stress on simpler concepts. In [Mar-95] M. Maredi and H.J. Oosthuizen point out the
problems associated with the poor mathematical background of a large group of South African
students. We have to overcome a similar obstacle. Many of our students experience difficulties in
understanding automata based models, attribute-value flow, semantic specifications. In contrast, more
mechanistic concepts are easily understood. For example, the students understand better the
construction of a case-type scanner than building a finite automaton from a regular expression. They
understand more easily the construction of precedence-based shift-reduce parsers than LR(k) parsers.
They prefer building translation schemes to defining semantic functions. Fig. 1 shows the model of a
compiler adopted in our course.

We made a fundamental decision that our tool will be used primarily by the individual students rather
than by the instructor in the classroom (although it could certainly be used for classroom
demonstrations). Everyone knows the importance of the student role in the learning process. It has
been stressed by several authors [Cou-93,Sch-93] that one of the most important ingredients of a
successful learning tool in science and engineering education is its flexibility and its ability to be
adapted according to the student's needs and personal ideas. This is why our toolkit offers the students
differing alternative models to probe their understanding of different parts of compilers they build.
We have included the following:

- two scanner generators. One of them generates case-type scanners from a BNF description of the
source language syntax. Some conventions must be observed for the generated scanner to be
immediately ready for use. Its main advantage is its very simple structure which students are able

212 Saicsit ‘96

to understand and modify without difficulties. In the closed laboratories this scanner generator is
used in all cases which are not primarily concerned with scanning. The second generator
generates scanners from a description of the lexicon by regular expressions. As mentioned above,
we prefer the first, more mechanistic approach. In the closed exercises the second generator is
used only to illustrate a more general and modern approach. Because of the standard interface
used by both generators, in their individual work the students are able to choose the approach that

they prefer.

Error
Handler

Symbol Table Manager
Symbol Table

Inameltype Ilength addr |

Control
---------- Information

Lexical
Analyzer
tbken_class
spelling
fum_value
Syntax Stacks and Trees
Analyzer
sp->
dle
_______ mp->
Contextual parse var fixv ...
Analyzer & stack
Synthesizer
N\ |
Code
Generator
Code
(I N I I
A A
I I
code p code_limit
Data
N N I O A
N N
I I
data p data_limit

Figure 1. The adopted structure of a compiler

Saicsit ‘96

213

- two parser generators - a top-down (LL(1)) and a bottom-up (mixed precedence). Only the
bottom-up parser generator was operational in the last academic year, however the students
practiced top-down parsing by building hand-written recursive descent parsers from extended
BNF descriptions of the source languages.

- an almost empty "skeleton" routine for semantic analysis and synthesis. The students try their
semantic actions interactively before supplying the code to fill in the "skeleton" routine. The
different options that they could explore originate from the different possibilities for defining the
concrete syntax and linking it with the semantics of the source language.

- a set of primitive code generation routines that generate assembly code for the TAM virtual
machine (see below). The students call these routines from their own semantic programs.

- an error handler, a major part of which is an adjustable syntax error recovery routine
implementing "panic" mode of recovery [1]. In addition students are encouraged to implement
and explore recovery by replacement and error productions [1].

- a stack-machine emulator. We have adopted the TAM virtual machine described in [9], and have
developed an interactive user interface and an assembler for it.

- utility programs. At the time being these include symbol-table, stack and tree manipulating
routines.

- a standard interactive user interface that allows prototyping and debugging of compilers being
built by the students.

Below we shortly discuss the last three components.
3.1. Defining Symbol Tables

Understanding symbol-table manipulation is a key point in learning contextual analysis and synthesis.
Our goal was to implement a reusable and easily adjustable component that would conveniently allow
visualization. We chose to implement the symbol table as a heterogeneous C++ class having objects
of another class as an attribute. Each symbol table entry consists of a scope level number, a name and
an attribute pointer. In this way all symbol-table operations were implemented in advance, while the
structure of the attribute was left open. In a minimalist scenario, the students are only expected to
specify the structure of their attribute. This was the case in our closed laboratories. In order to make
the exercises simpler and to provide a standard visual image of the table, we used attributes with a
fixed structure, however the heterogeneous class approach allows much more flexibility. Not only can
the attribute be different for different compilation exercises, not only can it be arbitrarily complex (for
example, a tree structure), but also each symbol-table entry

can have a different structure for its attribute. This could be useful for more advanced cases or
optimal utilization of memory.

An interesting side effect of the flexible implementation of the symbol table was the active interest of
several of our students in object-oriented programming.

3.2. Defining and Manipulating Trees

Parse trees and abstract syntax trees are popular and well understood intermediate representations, but
it would be unrealistic to expect that the students will have the time to implement tree structures in the
time scheduled for our course. Instead we implemented a C++ class that allows flexible tree
manipulation compatible with the one described in [Wat-93]. We eliminated the limitation of [Wat-
93] on the arity of nodes. For visualization we chose a two-dimensional representation of trees as
more appropriate for our educational goals, instead of the widely used linear representation.

214 Saicsit ‘96

3.3. The Stack Machine

The code generation part of a compiler is very much dependent on the target machine. Different
machines have different addressing conventions and register configurations. A virtual stack target
machine has many advantages for a first course in compilers, like ours. Firstly, using a stack target
machine eliminates the problem of intermediate storage and register allocation for expression
evaluation. Secondly, the stack is the natural run-time storage organization for languages with nested
scopes and recursive routines. Both texts [Wat-93] and [Aho-86] refer to virtual stack machines, but
the presentation in [Wat-93] is tightly bound to such a machine. We found this presentation very
useful and easily understandable by the students.

The TAM stack machine [9] has two separate stores for code and data. The data store accommodates
a stack and a heap growing in opposite directions. All evaluation takes place on the stack. Primitive
arithmetic, logical and other operations are treated uniformly with pre-programmed functions and
procedures. An important advantage for our course is the fact that the procedure call and return
conventions are implemented at the TAM machine level. This simplifies code generation, while still
allowing students to observe the adopted run-time storage organization. A number of registers are
dedicated to specific purposes.

Our implementation of the TAM stack machine includes a loader and an interpreter. Each of them
illustrates a topic in our course. The interpreter can be run in a step-by step mode, thus allowing
students to observe the execution of their compiled programs. Fig. 2 is a snapshot of a screen showing
our user interface to the TAM interpreter. The current instruction is at address 132 of the

code store (pointed by the register CP). The program is stored from location 0 (register CB) to
location 199 (register CT). Next available location in the stack is 21 (register ST), the stack base is 0

Registers
CB CT PB PT LB L1 12 L3 L4 L5 L6
0 199 1024 1052 0 0 0 O O O O

CP SB ST HB HT Current Instruction
132 0 21 1024 1024 [6,2, 0, 20]

Data Store - The Stack
i 7 0 8 9 12 1 26 4 6 4 100 O

o 1 2 3 4 5 6 7 8 9 10 11 12

Code Store

129: 6 2 0 10

130: 62 0 8

131: 14 0 0

= 132: 62 0 20
M - Mode No-Tracing 133: 62 0 8
C - Code 134: 04 1 14
D - Data 135: 30 0 1
<Enter> - Continue 136: 6 2 0 8

Fig. 2. A shapshot showitig the TAM interpreter interface
Saicsit ‘96 215

