- two parser generators - a top-down (LL(1)) and a bottom-up (mixed precedence). Only the
bottom-up parser generator was operational in the last academic year, however the students
practiced top-down parsing by building hand-written recursive descent parsers from extended
BNF descriptions of the source languages.

- an almost empty "skeleton" routine for semantic analysis and synthesis. The students try their
semantic actions interactively before supplying the code to fill in the "skeleton" routine. The
different options that they could explore originate from the different possibilities for defining the
concrete syntax and linking it with the semantics of the source language.

- a set of primitive code generation routines that generate assembly code for the TAM virtual
machine (see below). The students call these routines from their own semantic programs.

- an error handler, a major part of which is an adjustable syntax error recovery routine
implementing "panic" mode of recovery [1]. In addition students are encouraged to implement
and explore recovery by replacement and error productions [1].

- a stack-machine emulator. We have adopted the TAM virtual machine described in [9], and have
developed an interactive user interface and an assembler for it.

- utility programs. At the time being these include symbol-table, stack and tree manipulating
routines.

- a standard interactive user interface that allows prototyping and debugging of compilers being
built by the students.

Below we shortly discuss the last three components.
3.1. Defining Symbol Tables

Understanding symbol-table manipulation is a key point in learning contextual analysis and synthesis.
Our goal was to implement a reusable and easily adjustable component that would conveniently allow
visualization. We chose to implement the symbol table as a heterogeneous C++ class having objects
of another class as an attribute. Each symbol table entry consists of a scope level number, a2 name and
an attribute pointer. In this way all symbol-table operations were implemented in advance, while the
structure of the attribute was left open. In a minimalist scenario, the students are only expected to
specify the structure of their attribute. This was the case in our closed laboratories. In order to make
the exercises simpler and to provide a standard visual image of the table, we used attributes with a
fixed structure, however the heterogeneous class approach allows much more flexibility. Not only can
the attribute be different for different compilation exercises, not only can it be arbitrarily complex (for
example, a tree structure), but also each symbol-table entry

can have a different structure for its attribute. This could be useful for more advanced cases or
optimal utilization of memory.

An interesting side effect of the flexible implementation of the symbol table was the active interest of
several of our students in object-oriented programming.

3.2. Defining and Manipulating Trees

Parse trees and abstract syntax trees are popular and well understood intermediate representations, but
it would be unrealistic to expect that the students will have the time to implement tree structures in the
time scheduled for our course. Instead we implemented a C++ class that allows flexible tree
manipulation compatible with the one described in [Wat-93]. We eliminated the limitation of [Wat-
93] on the arity of nodes. For visualization we chose a two-dimensional representation of trees as
more appropriate for our educational goals, instead of the widely used linear representation.
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3.3. The Stack Machine

The code generation part of a compiler is very much dependent on the target machine. Different
machines have different addressing conventions and register configurations. A virtual stack target
machine has many advantages for a first course in compilers, like ours. Firstly, using a stack target
machine eliminates the problem of intermediate storage and register allocation for expression
evaluation. Secondly, the stack is the natural run-time storage organization for languages with nested
scopes and recursive routines. Both texts [Wat-93] and [Aho-86] refer to virtual stack machines, but
the presentation in [Wat-93] is tightly bound to such a machine. We found this presentation very
useful and easily understandable by the students.

The TAM stack machine [9] has two separate stores for code and data. The data store accommodates
a stack and a heap growing in opposite directions. All evaluation takes place on the stack. Primitive
arithmetic, logical and other operations are treated uniformly with pre-programmed functions and
procedures. An important advantage for our course is the fact that the procedure call and return
conventions are implemented at the TAM machine level. This simplifies code generation, while still
allowing students to observe the adopted run-time storage organization. A number of registers are
dedicated to specific purposes.

Our implementation of the TAM stack machine includes a loader and an interpreter. Each of them
illustrates a topic in our course. The interpreter can be run in a step-by step mode, thus allowing
students to observe the execution of their compiled programs. Fig. 2 is a snapshot of a screen showing
our user interface to the TAM interpreter. The current instruction is at address 132 of the

code store (pointed by the register CP). The program is stored from location 0 (register CB) to
location 199 (register CT). Next available location in the stack is 21 (register ST), the stack base is 0

Registers
CB CT PB PT LB LI L2 L3 L4 L5 L6
0 199 1024 1052 0 0 0 0 0 O O

CP SB ST HB HT Current Instruction
132 0 21 1024 1024 [6,2, 0, 20]

. Data Store - The Stack
1 7 0 8 9 12 1 26 4 6 4 100 O

o 1 2 3 4 5 6 7 8 9 10 11 12

Code Store

129: 6 2 0 10

130: 62 0 8

131: 14 0 0

=>132:.62 0 20

M - Mode No-Tracing 133: 62 0 8
C - Code 134: 04 1 14
D - Data 135: 30 0 1
<Enter> - Continue 136: 6 2 0 8

Fig. 2. A snapshot showitig the TAM interpreter interface
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(register SB). The heap is empty (HB = HT = 1024). We are executing the global part of the program
(LB=0, and all link registers - L1 to L6 contain zero). The primitive routines addresses are stored
from location 1024 (PB) to location 1052 (PT).

We also implemented an assembler for the TAM machine. There were several reasons for this
implementation.

- Our syllabus includes coverage of assemblers as simple translation systems. The forward
reference problem and its solution via backpatching are illustrated on the example of assemblers.
We also use assemblers to illustrate languages with monolithic structure.

- We cover assemblers before code generation, and use the TAM assembler to introduce the TAM
machine itself.

- Our code generation routines generate mnemonic TAM assembler code rather than numerical
TAM machine code. This greatly increases the readability of the generated code and helps the
students understand the code generation templates for control structures and expression
evaluation, as well as identify the possibilities for optimization. As forward references are dealt
with by the assembler, this also simplifies the contextual analysis and allows the students to
concentrate separately on its other aspects - identification for nested scopes and type checking.

As a bonus, the TAM assembler and interpreter will be used for illustrations in two other courses -
Machine Organization and Assembler Programming.

3.4. The Compiler User Interface

As mentioned above, our decision was to make a learning, rather than teaching toolkit. The process of
learning compiler construction involves prototyping the behaviour of the compiler, as well as locating
and repairing errors in compilation. The location of a defect may not be obvious from the generated
target code. The user interface must allow the student to study the behaviour of the compiler in order

to find the source of a defect.

Our toolkit views the student as the active and only participant in the learning process. It provides a
platform from which the student can actively explore and control the interactions and monitor the data
and control flow in the compiler being built. The student can interact with the various parts of the
compiler, examine and change data values at any time. The feqdback provided by the interface helps
the student understand where he is in the compilation process. There are several paths of interaction

between the toolkit and the student:

- step by step output of the canonical parse on the screen and in a listing file. This includes the
production applied and the current sentential form at each step of the parse.

- screen output of the contents of all stacks. The students can change the stack values at each parse
step. This is particularly useful when prototyping semantic analysis and synthesis routines which
manipulate stacks parallel to the syntax stack.

- screen output of the symbol table. After examining its contents, the students can change it as
appropriate.

- direct emission of code or comments in the object file. Students can enter the code to be emitted
from the keyboard.

- screen output of the generated code and data. At each step of compilation the students can view
and if necessary change the code and/or the data generated so far.

216 Saicsit ‘96

4. The Laboratory Component of the Course

Designing the laboratory component for a course is not that different from designing the course itself.
You need to have in mind who you are teaching, what you are teaching, and how you will teach it.
The stress in our course is on simpler concepts that can be mastered in the limited scheduled time. We
take into account the difficulties our students have with advanced theoretical material. We try to
support the lectures with numerous examples, case studies and practical work.

There are 14 closed practical exercises included in the course. Here we will mention only the most
important of them. An essential assumption for the success of each laboratory session is that students
know in advance their tasks and do some minimal theoretical preparation for them.

4.1. Scanning with Case-Type Scanners

This is the first scanning exercise. Its purpose is to familiarize the students with the standard scanner
interface and with the structure of the case-type generated scanners. They define a language in BNF,
construct a scanner for it, and interface the scanner to a main program (e.g. to output each source line
in reverse order, search for given words, print the source program with indentation depending on
certain tokens etc.). The students design their own main program or choose its functionality among
several suggested ideas.

4.2. Canonical Parse and Synthesis

This exercise is done in the fifth week of the semester. It resembles an example done in class. The
students study a very simplified compiler that still generates meaningful code. The purpose is to
illustrate the syntax driven nature of the compiler and to show how using an additional stack the
compiler can keep track of the run-time location of operands and intermediate results in expressions.
The corresponding ideas are central in the course. They are introduced in the preceding lectures and
recur and are further developed throughout the semester.

4.3. Assemblers. Simple Languages with Monolithic Block Structure. Backpatching

The TAM assembler is a second example of a simple translation system built with our toolkit. The
students study its structure, follow the backpatching process, and get acquainted with the TAM
abstract machine and its user interface. Sample assembler programs for searching and sorting arrays
are provided, but students are expected to write their own examples. ‘

4.4. Syntax Error Recovery with Top-Down and Bottom-Up Parsing

This is an important exercise in which the students try to limit the impact of source program syntax
errors on the syntax analysis. They design sets of stop-symbols for so called "panic" error recovery
and experiment with them. They verify the statement that the set of stop-symbols is very much
language dependent and blindly including too many stop-symbols has an equally negative effect as
including too few of them. Students are encouraged to use the second half of the scheduled time to
include in the syntax of their language error productions or to experiment substituting an expected
symbol: for an erroneous one.

4.5. Semantic (Contextual) Analysis

This exercise illustrates the concepts of identification and type checking introduced in the lectures. A
skeleton structure for the compiler is provided, as well as sample identification and type checking
routines, and hints how to use them. After constructing their semantic analyzer, the students are
expected to test it with correct source programs and with programs containing some typical errors,
such as undeclared identifiers, double declarations in the same scope, type mismatch in an
assignment, type mismatch in an arithmetic or boolean expression, missing return statement in a
function body, parameter type mismatch in a function call, etc.
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4.6. Run-Time Storage Organization for Languages with Nested Block Structure

Two exercises are devoted to this topic. The source language has only declarations and assignment TEACHING TURING MACHINES - LUXURY OR NECESSITY?
statements with no arithmetic or other operations. The purpose is to concentrate on run-time re- Y.Velinov

presentation ot" dlfferer}t data types, stack storage allocation, and parameter passing protocols. The Department of Computer Science and Information Systems

students experiment with the compilation process and observe the behaviour of their compiled University of Natal, Pietermaritzburg

programs on the TAM stack machine. yuri@cs u’np ac.za

4.7. Code Generation
There are two exercises for this topic. The first one uses a simple language with monolithic structure, Abstract

expressions with arithmetic and logical operations, assignments, branch and loop statements. The ipurpose of this paper is to outline an approach for the development of the Tape

Auxiliary routines for building code templates are provided. The students are expected to incorporate : i ; ich i
these in the c.ompil‘er. The second code _generation exercise is the last for the course. It integrates the \ Machu':es m(())rcizl %ZeaTh:gghoifs(i)(;l;:%ut;tllznd\:‘llléf: lesdb;,ﬁgzx:?:&y t((:ft:eTI:a;
I‘;Od;ﬁ?fl'eranmcll vt o s el e gy s semestor. Thesstadent s s st | izzarcl:lt)l]iln:r Swimulz;tor andp:) Tape Machine Assembler I;t gives possibility to ichieve tﬁe
ut eatured source language. "
stae ‘ aims of the theory without any loss of mathematical rigor but in more natural, useful

v ive manner.
5. Conclusion | and attractive mann

There are several factors of Computer Science education that make the application of our toolkit Inerodiin
feat;lble. The most important one is perhaps the I_lecessity of supporting the theoretical considerations Tape Machines were introduced by A. Turing [1936] as a theoretical model of the concept of
in the c.oncrfete subject area with HUIEEOus practlca.l examples. .Th.ese make ﬂ}e specific knf)wledge computation several years before the real electronic computers appeared in practice. The hypothetical
more dlgegtlble for students and give them the feeling of quantitative evaluation of theoretical devices originally considered by A. Turing (Tape Machines known now as Turing Machines) are
li;nsulieclianon& Thedqther factor 1; the needlfo_r the students to apply the Software Engineering | appealing because of their simplicity, transparency and completeness. On one hand, they embrace all
owledge acquired in a course that 1s taught just a semester before th‘_? Compilers course. Building a ‘ aspects of the algorithmic processes (the concept of data, the concept of a control device, the concept
complete compller for a-n.on-trmal langua-ge can constitute a term project for a team of students and of an algorithmic language), and on the other hand they convey a strong feeling of a mechanistic
certainly provides an exiting software engineering experience. It is worth mentioning that our toolkit device working by itself and independent of any human intellectual activity.

itself is being implemented mainly through individual and group student projects.
Nowadays, Tape Machines in their different forms are an indispensable pedagogical vehicle in

We have recently obtained several tutor suggestions for extensions of our toolkit. The main ones are: contemporary courses in the Theory of Computation. However, they and the ways the theory around

a log of the student interactions with the system and a help dialogue when no interactions are made. them is developed suffer some disadvantages. The first thing to note is that the original Turing

We intend to use a w_'eighted_approach to asses the useability of the toolkit's components and decide | machines are extremely clumsy when really interesting computations have to be performed. There are

on the further directions for improvement. | explicable reasons for that. From a purely theoretical point of view any model of computation must

face two discrepant requirements:
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The purpose of this paper is to outline an approach for the development of the theory of Tape
Machines which is bound more closely to the real computer world. I will try to show that without any
loss of mathematical rigor the aims of the theory can be achieved in a more acceptable and natural
manner. That if we wish we can even rise the level of rigor. Finally, that the theory can outline ideas

used in the real computer practice.

Tape Machines

If the first of the requirements described above is regarded as essential the initial machine model
must be as simple and as transparent as the original Turing Machines are. This together with the fact
that writing programs is considered as the most fundamental task in Computer Science makes the
machine proposed by Wang [1957] a natural candidate. In the further considerations I will accept as a
groundwork the modification of the Wang's machine which can work on arbitrary symbols.

A Tape Machine (fig.1) consists of three components: a data tape, a program tape and a
processor.

DATA TAPE

PROCESSIOR
counter:

1

DEL=

t/4: choose tape «/+: nove left/righ Alt-0: quit
Alt-N: write Delete Insert Alt-P.Home: position pointer
Alt-C: clean Alt-T: text Alt-M: mode Alt-1: input/output

Fig.1.

The data tape is infinite in both directions. Each of its cells can be empty ( _denotes the empty
symbol) or can contain exactly one symbol from a fixed alphabet A. Data, properly organized, are
situated on the otherwise empty data tape symbol by symbol. When the machine works the size of
the area which contains nonempty cells may change but is always finite.

The program tape has a beginning and is infinite in only one direction. Each of the cells of the
program tape can contain exactly one of the symbols from the alphabet

{R', 'L, 'W,'C, U, 1Mu Avu{}

The purpose of the program tape is to store the instructions for the processor - the machine
commands. The machine commands are the symbols 'R, 'L' and the strings from the sets
{U}e{| Y, {W}leAor {'C}eAe{] '} (here  stands for the concatenation operation). We
call the symbols 'R, ‘L', 'W', 'C' and 'U' the command codes; U is the code for unconditional jump,
C is the code for conditional jump, W is the code for write operation, R is the code for right
movement and L is the code for left movement. Only a finite number of cells in the programming
tape can contain nonempty symbols. .

A continuous sequence of machine commands is called a machine program. A machine program
must be situated on the program tape symbol by symbol starting from the first cell, with no empty
cells between the commands. All unused by the program cells on the program tape must be empty.
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The commands in a program are naturally numbered in the order in which they appear with
consecutive positive integers starting from 1. The ordinal numbers of the commands in a program
are used by the processor when implementing the jump commands.

The processor works in discrete time. The time scale is represented by the sequence of the natural
numbers. At every moment of its work the processor observes exactly one cell of the data tape and
one cell of the program tape. It can move the observation point on the data tape one cell to the left or

to the right or it can write in the observed cell any symbol from A U {_}. It can also move the
observation point on the program tape one cell to the right, or one cell to the left if the observed cell
is not the first one. The processor is organized in such a way that it follows the commands written on
the program tape. At the beginning the processor observes the first cell of the program tape. If it has
just started working or it has just executed a command the observed cell on the program tape
contains a command code. The processor analyzes the command moving if necessary the
observation point on the program tape to the right cell by cell until next command code is reached. If
a syntactically well formed command is recognized the processor interprets it implementing some
actions according to the type of the command as follows:

e Ifthe command code R is observed at some moment then at that moment the processor moves
the observation point on the data tape one cell to the right and moves the observation point on
the program tape one cell to the right to analyze the next command at the next moment.

e Ifthe command cod L is observed at some moment then at that moment the processor moves
the observation point on the data tape one cell to the left and moves the observation point on the
program tape one cell to the right to analyze the next command at the next moment.

e If the command code W is observed at some moment the processor moves the observation
point on the program tape one cell to the right to see the symbol a situated there, then it changes
the content of the observed cell on the data tape to & and once more moves the observation point
on the program tape one cell to the right to analyze the next command on the tape at the next
moment.

e If a command code U is observed the processor analyzes the content of the following cells
one after the other until a new command code is encountered. In the event of a syntax error the
processor stops. If a syntactically correct command - U with » symbols | after it, has been
recognized the general reaction of the processor to the command (we do not specify in details
how it reacts at each moment) is to move the observation point on the program tape at the
beginning of the rn-th command to process it at the next moment.

e If a command code C is observed the processor analyzes the content of the following cells
sequentially until a new command code is encountered. In any case of syntactical incorrectness
the processor stops. If a syntactically correct command - Co with 7 symbols | after that, has
been recognized the general reaction of the processor is as follows:

— in the case when a is observed on the data tape move the observation point on the program
tape at the beginning of the »-th command,;

—  otherwise move the observation point on the program tape to the beginning of the next
command.

e  The processor stops working if at the very beginning or just after the implementation of any

command a symbol other than a command code is observed.

One more possible step in order to make the Tape Machine more sound and correlated with the
other topics in Computer Science could be to describe the processor as a finite automaton. Following
this direction it deserves also to consider the relations between the Tape Machine and the original
Turing Machines. The "program" part of a Turing Machine is nothing else but a description of a finite
automaton, and we usually consider finite automata as hardware structures. It is also possible to show
that each program for a Tape Machine can be translated into a program for a Turing Machine and vice
versa. This underlines the important fact that the programs (with no recursive calls) are equivalent to
the hardware constructions.

The imaginary Tape Machine described above can be brought to life in the form of a simulator on
a real computer. Fig.1 shows the appearance of the screen of a simulator implemented for the IBM-
PC computers.
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Assembler for Tape Machines

Having a simulator at hand it is easy to demonstrate how inconvenient it is to write and change
machine programs. This naturally justifies a next step - the introduction of an assembly language and
an assembler for the Tape Machine. A simple form of an assembly language for the Tape Machine is
described below.

A program written in the assembly language for Tape Machines consists of a sequence of
commands each one written on a separate line. The commands have a standard format consisting of 5
fields of fixed length though some of them can be empty:

| LABEL | CODE OF OPERATION | SYMBOL | LABEL/NUMBER | COMMENTS |
4 symbols 3 symbols 1 symbol 4 symbols 15 symbols

In order to identify command lines (necessary for the conditional or unconditional jump operations)
the assembly language uses strings of symbols called "labels". A label is a string which begins with a
character and contains no more than 4 characters. The LABEL FIELD may contain any label but no
two different lines may have the same label in it. A label in the label field of a line identifies the
command in it. The SYMBOL FIELD may contain any symbol accessible on the keyboard of an
ordinary computer. The CODE OF OPERATION FIELD may contain any of the strings 'LFT",
'RGT, 'WRT', 'BEQ, 'BNE', 'JMP', 'HLT' which are the operation codes. The
ADDRESS/NUMBER FIELD may contain an label or a four digits positive integer number. The
COMMENTS FIELD may contain any sequence of symbols. It is not significant for the operation of
the program an can always be left empty.

The content of the different fields of a command line depends on the used operation code. The
meaning of the operations together with the format they require is described bellow, where 'nnnn'
denotes a four-digits number, 'mmmm' and '/ 117 - labels, 'x' -a symbol, and ' ' - an empty space for

a symbol:
mmmm LFT _  nnnn - Move the observation point on the data tapes nnnn cells to
the left.
mmmm RGT _ nnnn - Move the observation point on the data tapes nnnn cells to the
right.
mmmm WRT x - Write the symbol x on the data tapes.
mmmm BEQ x 1111 - If the observed symbol on the data tape is x continue the

execution of the program with the command labeled by ////or
otherwise continue with the next command.

mmmm BNE x 1111 - If the observed symbol on the data tape is not x continue the
execution of the program with the command labeled by /717! or
otherwise continue with the next command.

mmmm JMP _ 1111 - Continue the execution of the program with the command
labeled by 7111.
mmmm HLT - Stop the execution of the program.

The commands of the assembly language are executed one after the other in the natural order (from
top to bottom) of the lines they occupy, except when commands with code of operation JMP, BEQ
or BNE are encountered. Such commands change the natural order of execution of the commands
according to the meaning of the operations as it was described above.

It is necessary to show further that the programs written in the assembly language can be translated
into the machine language. Instead of giving a formal proof of this fact it is better to construct an
assembler. A two pass assembler seems more simple and convenient for the purpose. The assembler
itself should not be constructed on a tape machine. It should be considered only on algorithmic level
and of course could be designed in a high level language. The algorithm for its work stands for a proof
of the translatability. Moreover, the proof of the translatability can be supported further with a proof of
the correctness of the assembler algorithm. Fig.2 shows the appearance of the screen of an
implementation of the described assembler for the IBM-PC computers.

Though applied to a very simple assembly language, except for the subroutine calls which cannot
be introduced at this stage, the assembler for Tape Machines covers the most significant features of a
real assembler. For a more deep understanding of the assemblers structure, if this is regarded as
essential, a more rich assembly language with more commands can be introduced. Macrodefinitions
and even more - relocatable code together with linkers and loaders may also be considered.

Edit Assenble Information Mode: U

COMMEN ERRORS

REUERSE COPY of a string of sy
mbols a,b,c: OP someuwhere on
the string.

find right end

cases of observed synbol

case a
nark the place with enpty to
be able to return and restore

LINE:S

ERﬁﬁRS not a command

Fig.2.

Assembly language level is not considered in the standard texts concerning Turing Machines.
Usually, only remarks that without really increasing the computational power of the machines some
additional commands can be introduces are present. The introduction of an assembly language and
an assembler not only relieves the exposition of the theoretical results but also combines the needs
of the theory with the practical aspects of Computer Science.

Register Tape Machines

The topic can be developed further by introducing a higher level language such as the language of
flow diagrams considered by Hermes [1965], but it is better to continue in another direction - using the
assembly language to design a virtual Register Machine in order to incorporate the approaches of
Shepherdson-Sturgis [1963] or Minsky [1967].

A Register Tape Machine uses unlimited but finite number of registers instead of cells. Each
register itself is a tape infinite in one direction, which can contain an infinite chain of symbols. The
registers can be simulated on the data tape of the ordinary Tape Machine with the aid of two additional
servicing symbols, say '#' and '$'. The symbol # is used to separate the different registers and $ - to
indicate the beginning and the end of the field of registers on the data tape. On the data tape the
registers are situated attached, one immediately after the other. They can be distinguished by their
ordinal numbers or by appropriate names associated with them. The next figure shows a data tape with
2 registers containing some data.

s | # [ o] a ]| # ] | # | 3

Since each of the the registers must be potentially infinite if a symbol is to be inserted in a register
at a certain place a free cell is created there by shifting all the cells till the end of the register ficld one
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cell to the right. If a symbol in a register is to be deleted at a certain place all the cells from that place
to the end of the register field are shifted one cell to the left. Therefore, though implemented by a
single infinite tape, the virtual Register Machine appears to the user as a list of infinite tapes - registers
each one distinguished by a name or a number.

The language for the Register Machine can be constructed directly to be of assembly type. The
commands could be of the same format as the format for the commands of the assembly language for
Tape Machines. The minimal set of commands must include a command of the type DR xxxx (define
register) used to introduce a new register on the data tape and associate it with the name “xxxx',
commands for attaching a symbol at the left (right) side of a register and conditional jump commands
depending on the first observed symbol in a register (or distinguishing an empty register). More
complex commands can be introduced to compare the content of any two registers. Furthermore, the
natural numbers can be represented in unary code as sequences build using a fixed symbol and stored
in a register. Then commands for arithmetical operations can be considered or simulated. At this stage
all significant commands can be implemented by appropriate sequences of ordinary Tape Machine
commands to justify the claim for virtuality of the Register Machine. Further, in order to make the
virtual Register Machine more convenient, in analogy with the real computers, some standard resisters
can be introduced. For example an accumulator and a stack. The stack gives further possibility to
introduce subroutines, a mechanism for recursive calls, mechanisms for passing parameters and so on.
A higher level language can also be introduced if necessary.

With the virtual Register Machine at hand the development of the topic can continue to reach the
typical goals of the theory of computation (like proving the equivalence of different models of
computation, or establishing validity of important theorems like the Theorem of the three indexes or
the Theorem of Recursion) but in different stile - by designing programs instead of by proving
theorems. And the level of rigor can be raised by proving the programs correct.

Conclusions

Let us summarize what can be achieved if the approach described above is followed.

First of all, on the expense of building several levels of languages and machines, and considering
their interrelations the theoretical results can be achieved more easy. The formal troubles in most of
the proves are shifted in advance on the constructions of the assembly language or higher level
languages and their translation to the machine language. As a result the proves themselves become
more clear and communicate better the underlying ideas. This can be expected - the introduction of
several levels of languages reflects the popular in the Computer Science methodological principle
"divide and conquer” developed there under the pressure of the problem of solving real complicated
problems.

Further, the stile of the proofs is unified and consists of construction of programs and proving
them correct.

Finally, building an assembly language and the corresponding assembler, constructing a virtual
machine and a language to deal with it is beneficial by itself for the computer science education. The
ideas of how an assembly language is designed and how an assembler is constructed are developed in a
simple way and become more clear and understandable. This gives opportunity to introduce them at
the early stage of education.

As a whole this approach brings nearer the theory and the practice in the Computer Science to the
benefit of both. But there is also another reason supporting it. The variety of ready available high level
languages on one hand and the complexity of the contemporary real assembley languages on the other
lead to a decreasing interest in studying the assembley language level. There is a tendency to elude
assembley language courses in the software directed syllabi. As a result the students lose the touch
with the low level programming. The proposed approach is an alternative which gives possibliliy to
incorporate it into the theoretical courses.

The ideas described above were experimented quite successfully, at different stages of their
development, with first and second year students. As it could be expected the introduction of
simulators made the topic much attractive. The students enjoyed playing with the software supporting
the course and prefered it to the blackboard presentations. But playing they succeeded to rich faster
more deep understanding of the material.
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Abstract

This paper presents the lessons learned from using the C++ programming language and an
object-oriented design methodology for the development of a prototype analysis tool for
inheritance relationships in object-oriented C++ software systems.During the project two
tools were developed; a data extraction tool, and an analysis tool. We noted that
inheritance and dynamic binding , reuse and strong typedness are powerful features of
C++. However we also noted that; C++ is an evolving language which needs
standardization, the learning curve is very long, C++ leaves the programmer to resolve
most problems and C++ code is very difficult to navigate and understand. We hope that
the lessons explained in this paper will not only enhance the understanding of the C++
language, but also be very useful to anyone who intends using the language with any
other object-oriented designing approach.

Introduction

The C++ language Stroustrup [Str86] has become one of the most popular languages for the
development of object- oriented software. We feel that the popularity of C++ is due to the following
facts:
C++ is derived from C, itself a popular language. Therefore C developers looking for the
benefits of object- oriented programming look to C++ as a logical step towards object-oriented
programming. C programmers move incrementally to C++, adding in object-oriented techniques
at their own speed.

There is plenty of literature in the form of books and journals that explain and illustrate the use
of the C++ language.

There is many development tools for the C++ language.
The C++ language is available on most platforms;Unix, Dos and VMS.

In this paper, we explain the lessons that we have learnt from using C++ and an object-oriented design
methodology (the Rebecca Wirfs-Brock et al, [WBWW90]) in the development of an interactive
computer-aided prototype analysis tool for inheritance relationships in object- oriented C++ software
systems, SAOOSS (A System for the Analysis of Object-Oriented Software Systems). SAOOSS consists
of a set of tools; a data extraction and storage tool (DEST) to extract required data from a given C++
system and store it into an object-oriented database and an analysis tool to analyse the data in the
database. SAOOSS was implemented on the Unix platform using the Sun 2.1 C++ compiler, the OSE
C++ third party libraries by Dumpleton, [Dum93], and a graphical interface development toolkit, tcl-tk
by Ousterhout [Ous93]. In all a one hundred classes were designed and implemented.

We hope that the lessons explained in this paper will not only enhance the understanding of the C++
language, but also be very useful to anyone who intends using the language with any other
object-oriented designing methodology.
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Lessons learnt from using C++

Inheritance and dynamic binding a powerful feature

From the development of SAOOSS, we found that polymorphism, inheritance and dynamic binding
together form a powerful feature of C++. As part of (DEST), we have some classes as presented below

an abstract class DETAILS with a pure virtual function get-detai.ls(), B
classes INHERITANCE-DATA and METHOD-DATA publicly inheriting from class DETAILS and

client C++ code given below the classes.

In C++, a pointer to a base can point at either the base class object or a derived class ot?ject.. Th.e member
function selected depends on the classes of the object being pointed at. The implication of the
statement: pli] -> get - details() is the following:

Invoke at run time the get-details() member function, which corresponds tq the derived type of the
object that p[i] is pointing to. If the object's class has no override for get-details(), use the parent class

get-details().
The power of inheritance and dynamic binding

class DETAILS

{

public:

virtual double get-details()=0;

b

class INHERITANCE-DATA: public DETAILS
{

double height, width;

public

double get-details();

3

class METHOD-DATA:public DETAILS

double radius;
public

double get-details();
b

client C++ code

DETAILS *p[N];

for (i=0;i<=N;++)
get-details=p[i]->get-details()

When the client code is executed, the selection of which method to invoke 'for a v_ixtuz_ll func.tlon is
dynamic.  The advantage of such a design that uses inheritance and dynamic binding 1slthat is that,
if more classes that represents data to be extracted from given system are added to the inheritance
hierarchy, our code needs not change. This helps create open-ended systems.

Reuse support in C++ is a powerful feature

In C++, code reuse is achieved by use of aggregation, templates and private inheritance. We found
aggregation and templates very useful in the development of SAOOSS.

Aggregation

Aggregation is the containment of an object of a class inside another class. There were several cases in
the development of the analysis tool where we only needed to reuse a small percentage of the parent
methods. in such a case it was less appropriate to use public inheritance since the is-a-kind of
relationship did not exist among the classes. Since what we wanted was reuse of some functionality (not
all), aggregation was used. Although we could have used private inheritance, we felt aggregation was
better. Aggregation preserves the encapsulation of the contained objects, whereas when private
inheritance is used, the inheriting client can have access to protected members of the base class. The
fact that aggregation preserves encapsulation means that it reduces coupling among classes. Two objects
are coupled if and only if at lease of them acts upon the other. Any evidence of a method of one object
using methods or instance variables of another object constitutes coupling Chidamer and Keremer
[CK94].

Templates or parametric polymorphism

We found templates to be very useful in the development of SAOOSS. all the classes in the OSE C++
data structure library are templated. Whenever we wanted a specific type of data in the structures, all
we needed doing was instantiate the type. This saved us a lot of development time and effort and helped
produce consistency across the developed system.  However, the current problem with templates is
that most available compilers do not support them as yet, since they are a new feature recently
introduced into C++.

Strong typedness is a powerful feature of C++

C++ is a strongly typed language. A strongly typed language is one in which it can be guaranteed that
all expressions have correct types at compile time. The strongly typedness of C++ is due to the fact
that it has many fundamental types, it lets programmers define new types and has more restrictions on
the operations allowed on the instances of the type. C++ checks the message names and types of
arguments in a class function call at compilation. The massage must be defined for the object class.
In addition all the arguments must be types derived from the types declared for the function's arguments.

The importance of checking types at compile time is that in object-oriented programming, member
functions can be misused. The misuse of a message may not be obvious when a program's source is
checked. In addition since inheritance distributes the functions defined for a class, it may not be obvious
whether a function is available to a particular class.

The C++ learning curve

Learning the C++ language is not very straight forward, the syntax of the language is not very consistent,
especially when coming from a Pascal background. The learning of the syntax often distracts one from
more important issues like the use of the object-oriented features.

Once the syntax is mastered the next step is to learn how to use the object-oriented features of C++.
Learning to use the object features of C++ requires climbing a long learning curve. It takes several
months to really appreciate the power of C++ classes and to become class designers. In fact it takes
much more time to come to terms with the technical features of object-oriented programming than to
move to another procedural language. We feel that it is very difficult to use the object- oriented
features of C++ because C++ is a general purpose language that supports object-oriented programming
among other things. In addition C++ class constructs come with a variety of protection mechanism,
virtual function, virtual base classes, const member functions, reference variables. These features place
a heavy burden on programmers trying to move to C++.
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We feel that learning C++ and object-oriented programming is an ongoing process which will never ejnd
since C++ is continuously evolving. 2.5.C++ is an evolving language, which needs standardization

From our experiences of using C++ and reading other people's experiences, we feel that there is a very
urgent need for the standardization of the C++ language. No doubt C++ is perceived as one of.the
languages that is best suited for modern software development. At the moment there is great Yarlety
of C++ implementations. Many of the available implementation produce their own interpretation of
some C++ features. We feel that in the absence of real standards for language definition, future
implementations will inevitably lead to multiple dialects. There is great need for established
conventions and standards for design documents and coding.

Many development projects that find C++ to be the most appropriate language for their needs do _not
choose to utilise it because of the instability of the language definition, Lenkov [Len92]. C++is a
language that is still evolving and changing too rapidly to be sage choice for large software

development.

Since we started working with C++ in 1990, several new features were added to the language by
Standard Committee. These include templates, exception handling and rules for relaxing the return

types for virtual functions.
C++ leaves the programmer to resolve most problems

The C++ language assumes programmers know what they are doing and the available language
constructs should make it easy to do what is desired.

Programmers have to figure out improper overriding of member functions

Whenever a virtual function is declared in C++, the overriding function must have the same signature
as the virtual function in the ancestor. If the overridden signature does not match the signature of the
virtual member function in the ancestor class, C++ treats the member functions as two distinct member
functions with no relationship to each other. C++ leaves the programmer to figure out where a member
function is not properly overridden. We feel that C++ should at least warn us or report t.his as an error.
The consequences of leaving such a resolution to the programmer, can result in unpredictable results.

Mistakes in overriding a member function

class NUMBER class BIGNUMBER: publicNUMBER
{ -
public public o
virtual void add (int x) void add(int x, int y=10)
{ {
return X*x;}; return x*y;};
}; }5

void main()

{

NUMBER *p=new BIGNUMBER
cout <<p -> add(3) <<endl,

b

Support we have a parent class NUMBER, child class BIGNUMBER and a main function as s.hown
above. The reader of the program may expect 30 as the printed answer. We can justify this in the

following way, 'add' is virtual function NUMBER. In function main, a pointer to an instance of class
BIGNUMBER is substituted for the pointer to class NUMBER. The function 'add(3)' is then invoked
through the object pointer p. We would expect the add function in the child class to be invoked to
produce an output 30. However the redefined function 'add’' in BIGNUMBER violates the requirements
for overriding a member function. The signature of the function does not match the signature of the
member function in the parent class. Therefore static binding is used and the version of 'add' in parent
is bound to the object of type child, producing an output of 9.

Programmers have to choose which member functions to make virtual and which to make ordinary

C++ leaves the programmer to choose which functions are to be dynamically bound and which functions
are to be statically bound. How can a designer of a class hierarchy, for example in a class library know
in advance which functions some clients intend to requiredynamic binding? Some researchers have
proposed that it might be wise to declare all C++ functions as virtual Coplien [Cop92], Weiner [Wei94]

Programmers have to choose which ancestor classes tomake virtual

C++ resolves the repeated inheritance problem by using virtual base classes. A designer of a class
library is again forced to make decisions about which classes to make virtual. Once a class is make
virtual, it cannot be undone by a client who wishes to create a class which has two copies of the ancestor.
The classhierarchy designer actually imposes decision about the sharing in the descendant class.

Programmers have to resolve member function and datamember name conflicts.

Whenever multiple inheritance is used, it is possible that there maybe member functions and data member
name  clashes from multiple ancestors. C++ leaves the programmer to resolve such clashes. The user
has got to add code into the child class to resolve the clashes.

C++ emphasizes user defined memory management

A memory-safe language is one which a user's program cannot unknowingly corrupt the contents of
memory Reed and Wyant [RW92]. C++ is defined in such a way as toprevent the compiler from
statically checking memory operations. One of the most undetected programming errors is the index
outside an array bound. If the index is large enough the operating system may signal a fault else the
erroneous index goes undetected. The value may later be passed into other parts of the program and
some data structures maybe corrupted. In addition, C++ objects can be created using the new operator.
The programmer has to figure out when it is safe to deallocate an object. The only time it is safe to
deallocate an object is when there are no more references to it. As soon as an object is deallocated the
C++ language runtime routine makes the object available for a subsequent instance allocations. We end
up with a situations where two different sections of a program are using the same piece of storage to
represent two entirely different objects. This causes program crashes. The way C++ handles memory
management is in contrast with other object-oriented languages such as Smalltalk and CLOS. In
Smalltalk  and CLOS, unused objects are automatically reclaimed by the system. The programmer
is then free to worry about more substantial issues.

The fact that C++ leaves most problems to the programmer may seem a good idea. A programmer is
left with the maximum flexibility of expression. From our experience, this is bad in that programmers
are too often tempted to select poor tradeoffs because they do not understand the multitude of options
available.

It is very difficult to navigate and understand C++ code

C++ is an operator intensive language. Many operators maybe used with different meanings in different
context. For example the operator *=' can be used to mean initialise, assign or establish a pure virtual
function. This can lead to very difficult-to-read code. Another example which shows the difficulty of
navigating and understanding C++ code is where we have a member function 'get-name()' attached to
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object M. M -> get-name()

Given such a statement on is own, it is very difficult to figure out which class the method 'get-name()’
is attached.The possibilities are that:

'get-name()' is a member function of class EMPLOYEE of which M is an instance.

'get-name()' is a member function of one of the ancestor classes of the EMPLOYEE class, if the subclass
has not overridden the 'get-name()'method.

'get-name()' is a member function attached tosubclass of EMPLOYEE class, M is a pointer to an
EMPLOYEE object and 'get-name' function isvirtual.

The importance of navigating and understanding code for maintenance purposes can not be
overemphasized. The fact that navigation through C++ source code is a serious impediment to
maintenance has also been conformed by Wiener [Wie94], Wybolt [Wyb90].

C++ programming environments

A programming environment is an integrated set ofinteractive tools that include at least a language
interpreter, an editor, code browse, debugger and code finding systems. C++ offers no standard class
libraries except the iostream library. There are plenty of third partyvendors that are now offering special
purpose C++ libraries. The areas of application include graphical user interface, mathematics and data
structure libraries.

Conclusion

In this paper we have presented our experiences from using the C++ programming language and an
object-orented design methodology for the development of a prototype analysis tool for inheritance
relationships.
We noted that inheritance, polymorphism and dynamic binding, reuse and strong typedness are very
powerufl features of the C++ language. However we also noted that C++ is a language with the
following properties:

a long learning curve,

very difficult to understand,

leaves the programmer to resolve most problems, and

needs standardization.

The fact that C-++ leaves most of the decisions to the programmer and the fact that the C++ code is very
difficult to understand suggest that there is need for more comprehensive tools to help developers
understand the design decisions in developed systems. We hope that the lessons explained in this paper

will not only enhance the understanding of the language, but also be very useful to anyone who intends
using the language with any other object-oriented design methodology.
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Abstract

Parallel execution is the most powerful method of speeding up numerical analysis. However, numer-
ical complexity increases much faster than the problem size. For this reason the computational effort
required for the analysis of systems of big dimension, or generally speaking, large-scale systems, will
be substantial even with application of parallel computer architectures. This leads to necessity for
proper model reduction, as well as decomposition of the physical problem into a set of smaller-size
problems. . In this paper we propose a method which comprises both of these demands and results
in an algorithm for parallel hierarchical identification of reduced-size large-scale models.

Introduction: Large-scale systems and related numerical problems

Large-scale systems (LSS), sometimes called complex systems, are usually defined as systems that
consist of large number of interacting subsystems (Siljak 1983). Apart from large dimensionality of
such systems, the nature of interactions between the subsystems can be particularly complex (Siljak
1983). Very often, there are difficulties even in identifying inputs and outputs of such systems
(Siljak 1983). Also, numerical difficulties in analysis of even relatively low-order MIMO systems

- may be significant, and since in many cases LSS can be treated as MIMO systems, the same type

of numerical problems is immanent to them too. One of the most distinguishing characteristics of
LSS is the fact that ”one-shot” approach methods can not be, in general, successfully used in the
study of their behavior. This poses a significant problem if an on-line analysis of such systems is
needed. For instance, in the case of self-adaptive controllers for LSS that change behavior relatively
fast compared to dominant time constants of the LSS, obtaining a satisfactory model within a given
time constraint may be a very difficult problem which is sometimes impossible to solve.

One of the most common approaches for speeding .up calculations, in general, is utilization of
parallel processing algorithms. In this paper we investigate some possible benefits by parallelism at
the appropriate hierarchical level that may be used for implementation of faster self-adaptive control
of LSS. There are several levels of parallelism related to algorithm execution. What they all have in
common is that a sequential problem is somehow transformed into an equivalent form that is suitable
for parallel processing. Conceptually, the lowest hierarchical level is embedded on instruction level,
and it is closely related to underlaying (multi)processor architecture and corresponding compiler
design (Malinowski ef al. 1985). The initial sequential problem is still very much independent of
this parallelism and details of tasks necessary to convert such a problem into one suitable for parallel
processing are often hidden from the application level. SIMD (Single Instruction, Multiple Data)
and MIMD (Multiple Instruction Multiple Data) are examples of parallel architectures (Malinowski
et al. 1985).

Partially overlapping with this one is the next hierarchical level in which sequential, mathematical
(mostly numerical) algorithms are transformed into parallel ones. There are many examples of
these including partial differential equations, vector addition etc. (Lei ef al. 1985). Sometimes,
specialized parallel processors are specifically build for efficient execution these tasks. However,
it is obvious that such algorithms and processor realizations can not be used for other types of
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numerical problems. At this point it is interesting to note that analog computers are capable of fast
simulations because all of their elements work in parallel (Pearce 1985).

Still higher hierarchical level of parallelism is obtained at the application level. In this case the
initial problem is broken into a set of smaller-size problems which can be then solved in some
phases independently of each other. For such a situation problem decomposition depends crucially
on the nature and structure of the actual problem. For example, principles used for decomposition
in circuit analysis problems are not applicable directly to ecological systems or economic systems.
However, once obtained via decomposition approach at this level, subproblems are fairly autonomous
and they are very loosely dependent on the underlying processor architecture. This goes up to the
degree that subproblems can be solved independently on separate computers.

This problem decomposition approach is often the only way of reducing the rapid increase of the
size of numerical problems as the problem size increases. Parallelism offered by parallel computer
architectures will, naturally, significantly decrease the time necessary for solving the numerical
problems, but even in the case of problem decomposition, the problem size can reach the level
when this parallelism will not be fast enough to complete the task given within the prespecified time
interval.

A very prominent class of systems that exhibits numeric difficulties are large-scale dynamic systems
(Siljak 1983). Transformation of problems associated with LSS analysis and design into a form
suitable for parallel processing is not easy. These problems are not only due to the so-called “curse
of dimensionality”, but also due to the incomplete knowledge of subsystem interactions. Another
example of the increased numerical complexity could be large-scale optimization problems. The most
effective techniques for breaking up the original problem into a set of smaller ones are decomposition-
coordination (Schoeffler 1971) and decomposition-aggregation methods (Siljak 1983). The first one
is very useful for hierarchical control, while the other is good for model reduction. In what follows
we propose a technique that uses decomposition principle and model reduction in order to provide
a significant parallelism in the identification of a reduced order models of LSS.

The results are illustrated by a simulation examiple.

Decomposition as problem size reduction technique

Following mainly Guardabassi (1982) let S represent a solution set of an abstract problem P. The
problem P can be modelled (defined) as an ordered triple P = (D, , Z), where D is a data set
(over which the problem is defined). Here, the mapping 7 : D > d — 7(d) € Z (Z =imm(D)),
is called an intrinsic mapping of the problem P. Therefore, finding a solution of a problem P for
a given d means to find (any) element s € Z, such that s = w(d) and where Z # (). In this case
we say that P has solution(s). If there is only one s = 7(d), s € Z, Z # (0, then we say that the
problem P has a unique solution for d. In the case when Vd € D there exist only one 7(d) € Z,
the mapping 7 is called the intrinsic function of P. In the case Z =, P has no solution for d. We
will consider only the situation when  is a function.

When the problem P =(D,, Z) is a difficult (complex) one, we would like to transform it into
some other (ideally equivalent) problem P’ =(D’, 7', Z'), which is easier to solve. For the purpose
of building our identification procedure, we will assume that the problem P’ belongs to the class of
composite problems. A composite problem of order N consists of N subproblems which may, or
may not, be mutually dependent. Suppose that subproblem P; of the composite problem P is defined
by P; = (D;,m;, Z;). From this, we see that it has its local data and local solution set, as well as
its intrinsic function. To obtain the global solution of the composite problem P, it is necessary to
consider the global data set D (which generally will not be union of local data sets i.e. D # U Dy),

3
set of interaction functions which show dependencies of local data sets on other subsystems’ local
solutions, and finally, global solution function which relates global solution to local solutions.

A very useful tool for representing subsystetn Interactions, and generally the structure of LSS, is

236 Saicsit ‘96

graph theory. Each node can either represent a subproblem or its local data, and branches of the
graph represent the subsystem interactions. If such a (di)graph is acyclic, then the local data for
each of the subproblems Py depends only on local solutions of subproblems P;, i =1,2,...,k —1,
and possibly itself, but not on other local solutions, i.e. on solution of F;, ¢ > k. In this case all
subproblems can be solved in a sequence. However, if each subproblem has its own, autonomous,
local data, that are not influenced in any way by other subsystems, then parallel solvers (algorithms)
can be used . This is the principle that we will utilize in our approach to hierarchical identification.

Parallel Identification

From previous considerations it is clear that decomposition principle can be taken as the basis for
implementation of parallel processing. It is successfully used in many aspects of LSS analysis, such
as simulation (Malinowski ef al. 1986). One problem, however, in which decomposition principle
can not be applied directly is identification. The problem is that output of identification procedure
is a model, so, initially, there is no model to decompose. To be able to transform an identification
problem into a form suitable for parallel processing, we have to approach this indirectly.

When dealing with dynamic systems, similar considerations may be applied, but this time instead
of considering problem models we consider systems. Clearly, we may have global systems rep-
resentation (which is some form of input-output representation that hides its internal structure), as
well as a composite model representation, in which the intemnal structure (i.e. subsystems and their
interactions) is preserved to some extent. The relation between the two representations is given in
Takahara (1982). Only for some special cases this relation will be isomorphic; in reality global
models may have numerous equivalent representations as composite models.

This, however, is important for us as we can assume that model resulting from identification process
will have its equivalent composite representation. Suppose that the result of identification of some
given input/output data is a model M in global model representation. Based initially on Baji¢ (1995),
it is argued in Jankovié (1996) that model M can be approximated by its composite representation
M., in such a way that, if this representation is taken in a certain form, then a two-phase algorithm
results: in the first phase some composite model components are identified in parallel, and in the
second phase subsystem interactions are determined. The problem of matching the global model
with the one in the composite representation has its counterpart in control theory where it is called
»exact model matching procedure” (Moore and Silverman 1972). Our goal is to match some fictious,
»assumed to be true” model M with a composite one using output feedback. This procedure due
to way how it is implemented belongs to hierarchical type of identification. Analysis of the ability
of such approach to approximate the global model can be found in Jankovi¢ (1996). The particular
composite forms for identification of SISO processes are given in Jankovi¢ and Baji¢ (1996) and
for MIMO systems in Baji¢ and Jankovi¢ (1997).

In this paper we will combine the model reduction and parallel hierarchical identification to speed
up the modeling necessary for self-adaptive controllers of LSS. With regard to model reduction, we
take approach opposite to the one utilized by Obinata and Inooka (1976), Ouyang et al. (1897),
who select system modes according to their contribution to power spectrum of output. In our case
since there is no model initially, we use the method to discard the portion of power spectrum that
has small contribution to total power. After reducing the bandwidth of such systems we can apply
parallel identification procedure more efficiently to come to the subsystem models, and finally to
the composite model.

LSS model description for parallel identification

In this section we give the mathematical description of the assumed LSS model to which the proposed
parallel identification procedure will be applied. Let us assume that the original system, which is a
SISO one with the input signal v and the output signal y, is composed of IV subsystems S; which
mutually interact via the interconnection subsystem S;. We assume that each of the subsystems S;
is described by the transfer function G; and a dead-time L;. Thus for the j-th subsystem S; we
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have the operator equation

. = Gi — L8, . s I
Yj j(s)e | Uj Aj(s)'e Uj
bmJ,]Sm] =+ bmj-l’j:gT'IJ—l +...+ bl,jS + bO,j e—Ljsuj (1)
8" + anj_1,;8™ 1 +. .. +a1,;8+ao,;

where y; and u; represent the output and the input signals of S, respectively. We assume the
original system will have reasonably good representation as a LSS of the form

Y = Gj(S)eﬁLjSUj, 3 =1,2, N (2a)
Y1

y=| - (2b)
YN

Y= (Ccme—Ls) y (2¢)

u; = U+ myj, 4 =152, seydV (2d)
my

m = (2e)
my

m= A,y (29)

where y is the vector whose components are the outputs of subsystems, m is the vector of feedback
signals, A, is the N x N feedback matrix, Cer, is the N-component vector combining the subsystem
outputs, and L is the dead-time in the LSS model (1-2) separate from those included in the individual

subsystems S;.

The purpose of the identification is to determine the coefficients in the transfer functions G, j =
1,2,....,N and dead-times L;, j =1,2,..., N, for subsystems S;, as well as the matrix Ac,, the
vector C.m and the dead-time L. The proposed parallel identification procedure by reduced-order
models can be stated as follows. In the first step, the bandwidth of the output signal y is reduced
by discarding those frequencies with insignificant power contribution. Secondly, transfer function
models Gj(s)e”Lis of orders ny, n1+1,...,n; + N —1 are identified. This can be done in parallel.
In the final step, parameters Acm, Cem and L of the composite model (1-2) are identified.

Complexity analysis

In this section we give a rough estimate of the complexity of the identification procedure proposed.
We would like to analyze possible benefits of the proposed decomposition and identification method.
In order to do this we must somehow relate the computational effort with the problem size. Let
us assume that in the parameter estimation problem, the problem size is defined as the number of
parameters entering the optimization procedure. For the transfer function models

m m—1
y = G(s)e~Lou = B(s) o—Loy — bys™ +bm—18™ " +. ..+ bis+ bo Loy,

- —1 (3)
A(s) s+ ap_18" 14+, .. +ais+ag

the number of parameters that need to be determined is
O(G,n) <2n+1
since m < n due to physical realizability. Thus in the worst case one gets

O(G,n) =2n+1
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This relation is linear. For the composite (LSS) model (1-2) we have

N
O(CM,n) =) _O(Gi,n) + O(IM,N)

i=1

where ©(CM,n) is the number of parameters for composite model of order n, ©(Gj,n;) is the
number of parameters for each of the subsystem’s transfer function, where n; is the order of ¢ — th
subsystem, and ©(IM, N) is the number of parameters for the interaction subsystem S.

To get the expression for the maximal number of parameters of the composite model (1-2) that
needs to be determined simultaneously we note that, without loss of generality, for the numbers of
parameters of subsystems S;, j = 1,2, ..., N, the following holds

@(Gl,nl) < @(Gz,’nz) <...< G(GN,’TLN)

as subsystems S; can be numbered in such a way. Since all parameters of a subsystem .S; can be
determined independently of the parameter identification procedures for S;, @ 7 j, then the number
of parameters ©(G,ny) determines in a way the maximal computational effort and time needed
in any branch of sequential processing for obtaining parameter estimates for any of the systems S;
in parallel computation. For the interaction subsystem Sj, if subsystem’s dead-times are fixed, we
can write

©(IM,N)=N?>+N+1

where N2 term comes from the matrix A.,,, term N comes from vector Cc,, and the last parameter
is the composite model dead-time. It should be noted that the composite model (1-2) is of the order

=Y

For the first step in parallel processing identification, the maximal number of parameters to be
determined in an ’one-shoot’ fashion is 2ny + 1, as already asserted. For the second phase the
number of parameters is N2 + N + 1.

Let us assume that the number of instructions necessary for optimization of the n-parameter problem
is proportional to the square of number of parameters, i.e. proportional to n?. This is a very
conservative assumption and in any real-world situation this ratio is much larger. However, even
with this we will show a great advantage of the method proposed. So the total number of instruction
needed for the largest sequential processing demand in any of the parallel processing branches will

be

ins = O(Gn,nn)?+0OUIM,N)? = 2ny +1)°+ (N2 + N +1)°
= @m+2N-1)24 (N2 + N +1)° @

For the composite model given as (3) in the "one-shoot’ approach the number of parameters that we
need to determine simultaneously is

N N
O(Grs,n) = m+1=2> ni+1=2) (m+i—1)+1
=1 i=1

and the corresponding number of instructions will be
ins = 0(Grs,n)? = [N+ (2n, — 1) N +1]° )

To have a measure of the relative complexity in the case of parallel identification approach and the
’one-shoot’ approach we now form a ratio @ between the number of instructions (4) and the number
of instructions (5), and we call this the relative complexity index. This ratio takes into account the
effect of decomposition. Thus we have
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(2ny +2N — 12 + (N2 + N +1)°

@(N, nl) = 2

[N2 4+ (2ny —1) N +1]
We see that @ is function of the number of subsystems N and the lowest order n; of the subsystem
models.

The comparison of relative complexity of the identification methods for the parallel processing
identification and ’one-shoot’ identification for the model (3) of the same model orders is given in
Fig.1. Fifteen curves are shown, obtained for ny = 2,4, ..., 30, and for N = 2,3, ...,20. The curve
at the top is obtained for n; = 2, and the position of curves gradually goes down with the increase
of ny. The greatest reduction in the algorithm complexity is obtained for n; = 30 and for N = 8.
This roughly corresponds to the 30 times reduced algorithm complexity in parallel identification
method compared to the normal *one-shoot’ approach. Essentially, graphs in Fig.1 show that the
parallel identification technique proposed makes a significant reduction in the required instructions
during the identification (and the time required for that) compared to the "one-shoot’ approach..
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Fig. 1 Relative complexity curves
Example

The application of the method proposed is tested on the 3-channel autopilot model of order 74
(Simulink 1995). The input-output sequence is generated and a high frequency output components
were truncated by passing the output signal y through a Butterworth filter. The final results of
identification are shown in Figs. 2 and 3. As can be expected, the steady state’ part of response
is modelled more accurately because steady state is unaffected by low-pass filtering. This is clearly
visible from Fig. 3 where the error between the response generated by the original model and the
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response of the identified reduced order model is shown.

In the first phase three subsystem models of orders 2, 3 and 4 are identified. Note that identification
of these three subsystems can be done in parallel. Subsystem dead-times were kept fixed to zero.
The identified models in the first phase are as follows:

1.1868s+1.1189

Cr1= 770020157 1.1189°

Li=0

3.6471s% + 8.6297s +6.9719  _; .

Cly ==
2= 31 7.46945% + 6.0564s + 6.9719

) LQZO

Carim 0.8302s® + 8.237552 + 32.6406s + 30.0417
37 ¥ +2.946353 + 29.90552 + 24.2209s + 29.9163

In the second phase the identified subsystems are coupled via the interconnection subsystem Sy to
form the LSS model of the form (1-2). The parameters obtained in this phase are

0.0078 —0.3389 —0.2879
A.,=| —0.0861 —0.0457 0.0383
0.0334¢ —0.1791 0.3577

e 13 [3=0

Cem = [ 04234 —0.3325 0.9200 ]

L =0.0031

|
'
4
'
'
'
'
1

i i i
1 2 3 4 5 6 7 8 9 10

time in sec

Fig. 2 Response of original model of the order 74 (solid) and reduced order model (dotted curve)

time in sec

Fig. 3  Error of the response of the original model and reduced order model
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Conclusions

A hierarchical method suitable for parallel identification of LSS is proposed. The method has
advantages regarding computational complexity compared to the *one-shoot’ iden.tiﬁcati(.m approach.
Potential domain of application of this method is in the identification of complex industrial processes
from real-time measurements. The method is presented in a form suitable for SISO systems, although
it can be adapted to cater for MIMO system applications.
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Abstract

An IT/end user relationship is described as intriguing and complex and
is based on a physical and abstract dimension. These two dimensions
enable one to fully describe the holistic nature of such a relationship and
encapsulate the important elements of a support-oriented organization,
namely mutuality, belonging, and connection. (Pheysey (1993)). In this
paper a perspective on the importance of a supportive culture for sound
relationships is described.

The importance of a knowledge base for both the end user and the IT
professional before entering a relationship is also emphasized. Research
in this regard shows that end user involvement should be seen as part of
a relationship which exist between IT and its end users and which
emerges during the life cycle of a software product.

Introduction

In order for the IT department to provide a proper service and support to
its end users (customers), it is important that IT managers must first
understand the meaning of "proper service" and how it should be

managed. According to Luevano (1991), even if the IT department's

reporting mechanisms may indicate that IT is meeting its objectives and
doing an adequate job, these reports have no value if, in users' eyes, the
IT department is not providing the expected service. He further states
that the typical factors that contribute to negative perceptions on the end
user side are, amongst others, a lack of communication between the IT
department and the end users, and an IT department that is not "user
driven".

The understanding and managing of these factors are very important.
Global competition and challenges demand that the quality of services
and support offered by IT should more than satisfy end users. In his
article De Jarnett (1993) emphasizes the fact that everything IT does
should be focused on fulfilling the needs of the customer and that the
new goal should be to have delighted customers.
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Di Carlo (1989) states that there is wide recognition for the maintanance
of better sevice levels and that this should be a major strategic business
objective.

According to Carey (1988) this involvement increased the likelihood
that the resulting system will be satisfactory, as well as the amount of
time necessary to complete the development task. Furthermore, it
normally ensures that the amount of time and money spent on after
service activities (maintenance) is greatly reduced. It is therefore of the
utmost importance not only to ensure that the IT department knows how
to manage end user involvement, but also that end users know why they
should get involved and what role they need to play. In this regard, lves
et al (1984) also mention that the most commonly used indicator of
success in user involvement studies has been user information
satisfaction.

If one looks at what De Jarnett (1993) has to say in his article about this
whole issue, it is easy to realise that not much has happened in this
critical area. The question is why not? One could also ask whether all
the complexities of the whole picture are presented?

In this paper some important issues regarding rela‘tionshipsI between IT
and its end users are addressed. The complexities of such relationships
will be explained as well as how it should be managed. Furthermore, I
will explain why a supportive culture is important for sound
relationships and which elements are important in order to ensure that
such a culture will prevail.

In section 2 the diversity of end user involvement situations are briefly
explained whereas in the third section the concept of an IT/end user
relationship is defined and described as the umbrella for all the
"contact" which takes place between IT and its end users. Thereafter
the factors are described which will contribute to the creation and
enhancement of a supportive culture. The importance of a 'paradig-
matic break' from the prevailing orthodoxy in the management of
IT/end user relationships is emphasized in the conclusion.

End user involvement

A few years ago, user contact was mainly focused on user involvement
during systems development in a mainframe environment. Nowadays,
with all the recent developments in technology, this contact varies in
nature. For example, the growth in end user computing (EUC), which
started in the 1980s, implies a new way of "contact" the IT environment
has to deal with. According to Cotterman ez al (1989) this significant
phenomenon is ranked among the 10 most important MIS management
issues for the 1980s.

The term IT/End user relationship is defined in a separate paragraph in this paper.
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As far as the mainframe environment is concermned, three different
stages of IT/end user contact can be identified, namely:

* The request stage, during which the user communicates his/her
needs in order to activate the IT department to develop a
new product or to give the  necessary support. (The pre-development
phase).

*  During development, which entails user involvement at different
levels depending on the development strategy that is followed and
*  During the production phase or post implementation phase - in other
words, after the product has been placed in operation.

During all these different stages the end user and IT professionals are
involved in different formal and informal social communication
structures. The most common of these structures are project meetings,
end user groups, training and JAD sessions'.

According to Carey, end user involvement is an often overlooked aspect
in developing easy-to-use systems which consist of the methods used to
get users directly involved in the design, evelopment, testing,
implementation and maintenance of the system. He states that end users
are involved in different ways after an information system has been
implemented, of which the following are the most important:

End user training;

User resistance to change;

User feedback for system evaluation; and
User acceptance of the system.

* % % *

Of course, the abovementioned "ways of involvement" are different
social communication structures in which the end user participates. In
general, the importance of these social communication structures cannot
be over emphasized, because it has a direct influence and impact on the
quality of the end product, but more specifically on the efficiency of use
by the end users. As Carey puts it: "All of these issues impact on the
success of the information system."

Furthermore, as we all know, nothing is more pleasant than an end user
who is positive about a software project and who gives all the necessary
cooperation during the life cycle of the product. According to Hawk
(1992) an important and widely recognised goal of getting end users
involved, is to obtain a positive change in user attitudes and perceptions.

In their articles Ingersheim (1976) Baroudi (1986) and Olson et al
(1986) again point out that in order to improve user attitudes towards
the resulting system, they should get involved.

In the article of Roode et al (1989), reference is also made to user
involvement during systems development and the concept of "user

' The existence of social structures is a characteristic of a relationship and is discussed in
more detail in the following section.
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involvement transactions" is introduced. According to them, user
involvement during systems development has two overall objectives,
namely to achieve improved systems quality and to increase user
acceptance. This of course also contributes to the eventual success of
an information system. As far as involvement is concerned, it is defined
to ".. cover generically all activities which a person who is involved
may perform relative to the systems development project being
undertaken..". The generic term 'user involvement' includes a number
of 'user involvement transactions' which are observable units of
involvement.

Characteristics and definition of an IT/End user
Relationship

First of all a definition of such relationships are given in order to
eventually show the important role and influence that organization
culture may have on these relationships. Furthermore, it is important to
take cognisance of the fact that the success of information systems
depends to a great extent on the soundness of these relationships.

The abovementioned different "ways" in which end users are involved
before, during and after the implementation of an information system
are embodied in so-called "relationships". When an end user initially
states his need(s) for a given business environment, a new relationship
grows or develops therefrom. This means that whenever the IT
department starts with a new project, a new relationship is created with
the end user. In this regard Dahlbom et al (1993) states that a systems
development process is actually an intervention into current business
processes. As he puts it:

"Intervention is an approach to systems development with and by the
users. Responsibilities are negotiated and shared between systems
developers and users".

The nature of a relationship is therefore not only dependent on the
business environment that will be involved during the whole systems
development life cycle but also on the systems development approach
that is going to be followed'.

According to Carey (supra) there are basically three partners during the
life cylce of a software product, namely the IT professional(s), the end
user and the product itself. "The three participants in this relationship

dimensions enable one to fully describe the holistic' nature of such a
relationship and encapsulate the important elements of a support-
oriented organization, namely mutuality, belonging, and connection as
mentioned by Pheysey (1993) in his book Organizational Cultures’.

As far as the physical dimension is concerned, the following elements
could be seen as the most important:

*  People’

As far as people are concerned, a relationship consist of all the
responsible people who are involved in the systems development
life cycle at a given time. "Responsibilities are negotiated and
shared between systems developers and users" (Dahlbom (op. cif))

*  Technology

Technology may be seen as one of the most important elements in
such a relationship, which enables the people who participate in the
relationship to communicate with one another. Apart from the
normal communication technology4, facilities like help desks and
internet are of the most important role players in this regard.

*  Procedures

In this regard one can refer to two types of procedures, namely
organizational procedures (like standards and policies) which
already exist and which can be seen as a given and new procedures
that are being created by people because of their interaction with the
given procedures and technology. In this regard DeSanctis (1994, p.
125) states:

"Prior to development...structures are found in institusions
such as reporting hierarchies, organizational knowledge, and
standard operating procedures...the structures may be
reproduced so as to mimic their nontechnology counterparts,
or they may be modified, enhanced, or combined with
manual procedures, thus creating new structures within the

technology."

'"Under the description of the abstract elements the term ‘'holistic' is described in broader

terms.

K ...form an intriguing and complex relationship." (Carey (Op. cit.)) >The nature of a support culture is discussed in more detail in the following section.

*As human beings, people are viewed in this regard as the physical enablers who initiate,
create, participate and maintain relationships because of their interaction with one another in
the IT/End user environment. This is inline with the adaptive structuration theory of
DeSanctis (1994) which is used for theory building in my research; see also Orlikovski (1992)
who's structurational model of IT consists of three components, viz, human agents, IT, and
institutional properties of organizations.

‘ A definition of a relationship between IT and the end user during the
i life cycle of a software product will have to consist of two dimensions, ‘
namely a physical dimension and an abstract dimension. The physical
dimension should describe those elements which are necessary in order \
i to enable contact between IT and its end users, whereas the abstract
| dimension should describe the soft issues of a relationship. These two

4 .
. : S sellul tworks.
f "The hard, soft and dialectic approaches as described by Dahlbom et al refer. Telephones, fax machines and cellular networks
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Structures

Depending upon the "type" of end user and therefore the service and
support that will be offered, relationships will differ in content as far
as formal and informal social communication structures are
concerned. The most common of these structures are project meet-
ings, JAD sessions and end user group meetings.

For example, end users in the pure EUC environment would have
much less contact with the IT department than users who are totally
dependent on IT for their software products. In the first example,
relationships will probably consist of some informal social structures
in order to give the support this type of end user will need from time
to time. In the second example, relationships will probably consist
of formal social structures like scheduled end user group meetings,
in order to give the end user the necessary support and service.

These structures are mainly used by the end user to inform IT about
the business needs, but also to ensure that the emerging product
stays on track. On the other hand, it is used by IT to get hold of
business needs but also to get clarity on already stated needs. Fur-
thermore, these communication structures serve as inquiry forums
for both the IT professional as well as the end user during which
they learn and understand the new environment of the emerging
system or that part of the organization they are actually redesigning.
According to Dahlbom (1993, p 122) designing a computer system
is really a means of redesigning the organization. According to him
the challenge is to understand and change established traditions in
the user organisation as well as in the project group.

As far as the abstract dimension is concerned, the following
characteristics are the most important:

*

They are dynamic

The nature of the relationships between the IT department and its
end users will, inter alia, depend upon the "type" of end user, as
well as upon regarding the end user as a human being. According to
Umbaugh (1991, p. 140), when talking to end users the IT
professional should always keep in mind the users' concerns,
problems, environment, and responsibilities in terms of
opportunities for IT services and support. Furthermore, he says,
continuous contact with end users gives IT the opportunity to gain
more insight into their problems. This, of course, demands that
relationships should be adaptive to changing circumstances.

*

They are sensitive to change'

One of the most difficult problems during systems development is to
cope with users' resistance to change. Because of the social nature

of relationships, any form of change which is initiated on the IT side
will disturb such relationships.

They have a knowledge base

According to Carey (supra) at least part of the design problem
seems to be that the analyst/designer is working from his or her own
perceptions of the user's needs which often include unrealistic
expectations of user knowledge and an often mistaken idea of user
desires and requirements. Furthermore, he says, the analyst views
the computer from an expert's point of view and an often technical
perspective. The user views the computer as a potentially useful
tool, but from a more general orientation. These two views are quite
different and are often incompatible and in conflict.

The resolution of these different perspectives is possible only when
the analyst begins to understand the needs, requirements, and desires
of the user in order to design and produce the system properly”.

Users must also aid in this resolution by understanding the
limitations of the computer systems they desire as well as by

developing a thorough and specific understanding of their own
needs.

The abovementioned explanation of the complex world of
perceptions, attitudes and approaches towards developing software
products by IT professionals for the end user, forces us to a point
where one can say that in order to overcome the most serious
problems during this communication process in a relationship, a
knowledge base’ of some kind is necessary before entering a
relationship.

They have a supportive culture*

In order for a relationship to be sound continuous support and
mutual understanding, inter alia, need to be elements of such a
relationship.  According to Pheyse}; (op.cit.), a support-oriented
organization have the elements of mutuality, belonging, and
connection. Furthermore, an appreciative form of control should be
applied, which means: "management is seen to be a process focused
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1 . . gr e
Research in this regard still in progress.

“Research in this regard is described in the next section.

2 . . . " .
This problem also relates to Brunwik's law of the lens which is discussed in the next section.

4, . . . e
The importance of a supportive culture for maintaining sound relationships is discussed more
fully in the next section.
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om maintaining balance in a field of relationships" Gadalla and
Cooper (1978) quoted by Pheysey (op.cit.).

A co-operative behaviour pattern is followed by the participants

Co-operation is not a fixed pattern of behaviour, but is a changing,
adaptive process directed to future results. The representation and
understanding of intent by every party is therefore essential to co-
operation, and so the role of communication in co-operation is
important. Clarke ef al (1993).

Furthermore, they say, co-operation can also create new motives,
attitudes, values and capabilities in the co-operating parties and
therefore such behaviour will help to create and maintain a
supportive culture.

* They have an holistic nature

The important elements which make up a relationship between the
IT department and its end user at a given time are organized togetber
as a whole. If any of these elements are disturbed in a negative
sense, the whole relationship between the IT department and its end
users is undermined.

In order to ensure proper end user involvement, it is of the utmost
importance that the end user should understand its role and function
as end user.

One of the typical characteristics of end-user behaviour is the lack of
certainty of what they want which normally starts to disappear the
moment they get exposed to different possibilities shown by an IT
professional.

It is the responsibility of the IT department to create a culture with
the necessary characteristics to ensure that the end user can fulfil its
role. In such an environment the end user should feel comfortable,
secure, knowledgeable, and useful. Furthermore, such an environ-
ment should incorporate the abovementioned factors that will not
only ensure end user participation but will maintain a sound
relationship during end user involvement. The question now is how
can an IT department create and maintain such an organizational
culture?

A supportive culture for sound relationships
First of all it is important to start with a definition of what is meant with
the term culture. According to Towers (1992), an authoritative

definition of a corporate culture is as follows:

"Culture is the commonly held and relatively stable beliefs, attitudes
and values that exist within the organization"

Williams et af (1989).
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Service and support are but two of the important issues that IT should
concentrate on in order to survive. In a recent study of end users done
by Daryl et al (1994) it was found that only 2% of the interviewees do
not use a computer at all. Furthermore, the study revealed that the
majority of the companies in the study did have an information center
(IC), but a significant percentage of the end users were less than
pleased with support provided by the IC. This indicates that the

problem is serious and that a supportive culture does not exist in the
majority of cases.

In a study done by Orlikowski (1992), she points out the importance of
culture and the understanding of various viewpoints held by managers,
users and system designers in implementing new technology.
According to her, the viewpoints are significantly different, therefore
they define success very differently. Unless these various viewpoints
are surfaced and explored, use of technology can fail miserably, with
everyone blaming the product rather than the true culprits - the
corporate culture or the various groups' conflicting perceptions.

In order to bridge the "gap" between the world of the end user and the
IT professional, especially as far as new and/or unexperienced
participants in a relationship are concerned, it is of the utmost
importance that all participants in such a relationship should be on the
same "level" of communication. The understanding and managing of all
communication factors are very important.

Research conducted so far has shown with reasonable certainty that the
following factors are very important in order to change the mind frames
of all participants in a relationship in order to ensure sound
communications and proper involvement within the relationship - this in
itself will cause the creation of a new culture between IT and its end
users. According to Pheysey, in a supportive culture "people will
contribute out of a sense of commitment to a group or organization of
which they feel themselves truly to be members, and in which they
believe they have a personal stake." (Pheysey (op. cit.) It is therefore of
the utmost importance that every participant should have a proper
understanding and realisation of and commitment to these factors:

* Knowledge of the physical and abstract nature of the IT/End
user relationships as previously discussed

An understanding of the functions and responsibilities of the end
user as well as the IT environment

As previously discussed', Sprague et al (1993), states that the old
categories of end users are no longer appropriate, because of the
new level of pervasiveness taken on by information technology.

It is therefore important for an end user to know the category or
end user type he belongs to in order to know what his
responsibilities are and what kind of service and support he can
expect from the IT side.

'Research in this regard still in progress.
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* Knowledge of the ethical' grounds a sound relationships should

L be based on
* An understanding of the effects of organizational change on a
relationship2
* Brunwik's Law of the Lens.

The value of Brunswik's lens (Pitt & Bromfield, 1994, p.5) lies
in its emphasis of the fact that the accuracy of a person's
judgement depends apon the extent to which his mind represents
the environment it attempts to predict.

* Cognisance of the "holistic-dilemma"

As discussed previously, if any of the elements that make up a
relationship is disturbed in a negative sense, the whole
relationship between the IT department and its end users is
undermined. It is therefore very important for all role players to
‘ be sensitive and aware of this dilemma, in order to ensure sound

relationships.
" * Empowerment of the end user’
¥ Levels of end user involvement depending on the end user type4
* Approach to systems development

When developing information systems, development teams
should discuss and decide what course of systems thinking
(paradigm) they are going to follow. This is important because
everyone on the development team should at least work within
] the same broad framework of thinking in order to ensure a
: collaborative atmosphere. This is especially important from the
i end user's point of view. According to Dahlbom (1993) it
i should be realised that only by working closely with the users
‘ the development team will we be able to develop useful
information systems.

* The delegation trap as explained by Tony Gunton (1990).

Tony Gunton's 'delegation trap' refers to the bad habits of end
users who easily hand over systems to sub-ordinate staff to
operate as soon as the 'movelty wears off. In practice we have
seen numerous cases where end users participate in the

! Research in this regard still in progress.
’Research in this regard still in progress.
*Research in this regard still in progress.

* Research in this regard still in progress.
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development process and as soon as they get bored, they
delegate this important task to a sub-ordinate which may not be
the 'right' end user.

Conclusion

The question is, what is to be done by an IT department or for that
matter the organization which the IT department belongs to, that will
help to create and maintain such an environment where a supportive
culture between IT and its end users will prevail?

So far research in this area shows the importance of a ‘paradigmatic
break' from the prevailing orthodoxy in the management of the
participants in the abovementioned intriguing and complex
relationships.

I believe that there are several approaches or actions that IT can follow
in order to create such an environment. However, it is very important
that all employees on the IT side should be part of such a program of
action and everyone should work towards this new paradigm of
thinking.

One of the biggest dangers regarding the maintenance of a a supportive
culture in an IT department is that this culture can change because of
different forms of internal/ external change without even knowing it.
According to Pheysey et al (supra) one should take note of Greiner's
model which shows contingencies over time. Greiner called his model
‘evolution and revolution as organizations grow'. The model is used by
Pheysey to show a cyclic movement of control, starting in the
supportive culture area, moving through power, achievement and role
cultures and back to support culture. During this movement the
organization must resolve, as they grow, the four crises down the centre.
At this point, the question is: "Will the old crises recur, or will there be
new crises to face?" (Pheysey (op. cit.))

Possible solutions which may help IT departments in creating such a
supportive culture, might be to rethink the way their support is
structured and managed. In his article, Scannell (1994) states that
research among IT departments indicates that most need to adopt a new
method of end user support. According to him many things need to be
done of which restructuring the support function in order to implement
all efforts effectively is necessary. This is sanctioned by Fischer (1994)
who says "a well-designed IT support organization provides direct end
user support and fraining, innovations to the working environment,
consulting, and the necessary support mangagement."

As a conclusion a few practical suggestions are made in this regard.

e According to Fryer (1994), as companies become less hierarchical
and employees are expected to shoulder more responsibility,
operations staffers can be placed first in line for critical customer
and end user support positions. This implies a much more direct
IT/end user relationship.
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