custbld.slm

import builder walker .
export Build start list, Build add to_list

proc Build_start_list
Stack +:= [[Walk list]]

proc Build add_to_list
01, Stack := delete_last(Stack)'
02, Stack := delete_last(stack)
Stack +:= [02 + [O1l]]

custwalk. slm

export nothing

walker.slm

import custwalk '
export Object id_for, Runcall, Walk, Walk list

func Walk(T) -> Entity
if T(1l) in {Runcall, Walk list}
return T (1) (£t1(T))
else
return eval (T (1), tl(T))
end

func Runcall (lst) =-> Entity
return lst(l) + as_string(Walk_list(rest(lst)))

func Walk list(lst) -> list of Entity
return [all Walk(i) for i in 1lst]

func Object id for(cn, iv) -> Entity
return ‘new_'+cn+‘(\"+iv+‘\')'

func as_string(lst) -> String
return " ()' when lst = []
result := " ('

for e in all_but_last(lst)
result +:= mkstr(e)+ , '

loop i

result +:= mkstr(last(lst))+) !

S6

Saicsit ‘96

identifier.slm

import number
export Identifier, new identifier

Identifier : set of Entity := {}
name : map from Identifier to String

stored value : map from String to Number

func new identifier(n : String) -> Identifier
result := new(Identifier)
name (result) := n
func value(self : Identifier) -> Number
result := stored value(name(self))
if result = Undefined
repeat

put name (self) ?' & get v
until v in number !number is the bu

result := new number (mkstr(v))
stored_value(name(self)) := result
end

number.slm
export Number, new number

Number : set of Entity := ()}
slim value : map from Number to number

func new number (v : String) -> Number
result := new(Number)
slim_value(result) := mknum (V)

func display(self : Number) -> Number
put slim value(self)
return self

ilt-in numeric type

'number is the built-in numeric type

func divide(self : Number, other : Number) -> Number

result := new (Number)
slim_value(result) := slim value(self)

/ slim value (other)

func minus (self : Number, other : Nuﬁber)\—> Number

result := new(Number)
slim value(result) := slim value (self)

- slim value (other)

func multiply(self : Number, other : Number) -> Number

result := new(Number)
slim value(result) := slim value (self)

func plus(self : Number, other : Number)
result := new (Number)
slim value(result) := slim value (self)

* slim value (other)
-> Number

+ slim_value(other)

Saicsit ‘96

a7

expr.sim identifier.slm
import opsys parser builder walker import number unumber
export Identifier, new identifier
Parse (Command line(2)+ .expr' "r') o
lines := Walk(Stack(1l)) Identifier : set of Entity := (}

name : map from Identifier to String
Close (Stdout)

ok := Assign file(Stdout, Command line(2)+ .slm', “w') stored_value : map from String to Number+Unumber

Terminate process (Myself, 255) when not ok

put ‘import identifier, number' func new_identifier(n : String) -> Identifier

put ' result := new(Identifier)

for 1 in lines name (result) := n

put “Jjunk := 'l

loop func value(self : Identifier) -> Entity
result := stored value(name (self))

Close (Stdout) if result = Undefined

ok := Assign file(Stdout, Command line(2)+".lnk', “w') result := new_unumber(get')

Terminate process(Myself, 255) when not ok code_name (result) := name(self)

put ' ['Command line(2) '] [identifier number]' Ztored_value(name(self)) = result
en

Close (Stdout)

Execute_command(\slim '+Command line(2))
Delete file(Command_line(2)+‘.slm')

Delete file(Command line(2)+ .obj")
Delete file(Command line(2)+ .lnk')
Delete_file(Command_line(2)+‘.rsp')
Appendix 2

_ code.slm

export Code string

Code string : String :=

expr.slm
import opsys parser builder walker code
Parse (Command line(2)+ .expr' "r')

junk := Walk(Stack(1))
put Code string

S8 Saicsit ‘96 Saicsit ‘96

359

number.sim

import code unumber
export Number, new_number

Number : set of Entity := {}
slim value : map from Number to number 'number is the built-in numeric type

func new_number (v : String) -> Number
result := new (Number)
slim_value(result) := mknum (V)

func code for(self : Number) -> String
return '

func code name(self : Number) -> String
return mkstr(slim_value(self))

func display(self : Number) -> Number
Code_string +:= “put "+mkstr(slim value(self))+ \n'
return self

func divide (self : Number, other : Entity) -> Entity
return unumber.divide(self, other) when other in Unumber
result := new (Number)
slim value(result) := slim value(self) / slim value (other)

func minus (self : Number, other : Entity) -> Entity
return unumber.minus (self, other) when other in Unumber
result := new (Number)
slim_value(result) = slim_value(self) - slim;value(other)

func multiply(self : Number, other : Entity) -> Entity
return unumber.minus (self, other) when other in Unumber
result := new (Number)
slim_value(result) = slim_value(self) * slim;value(other)

func plus(self : Number, other : Entity) -> Entity
return unumber.minus (self, other) when other in Unumber
result := new(Number)

slim_value(result) slim_value(self) + slim_value(other)

60 Saicsit ‘96

unumber.sim

import code
export Unumber, new_unumber

Unumber : set of Entity := {}

operator : map from Unumber to String
operandl : map from Unumber to Entity
operand2 : map from Unumber to Entity
code name : map from Unumber to String

func new_unumber (op : String, opndl, opnd2 : Entity) —> Unumber
result := new(Unumber)
operator (result) := op

operandl (result) := opndl
operand2 (result) := opnd2
code_name(result) = new_code_name()

func code for(self : Unumber) -> String

code for(self) := *' lonly execute this function once
return “put \''+code name(self)+ ?\' &\n' +

‘repeat get '+code name (self)+ : Integer until '+code_name(self)+

/= Undefined'+ \n'

when operator(self) = “get'
result := code for (operandl(self)) + code for (operand2 (self))
result +:= codg_name(self)+‘ = ! -
if operator (self) = ‘“divide’

result +:= code_name(operandl(self))+‘/'+code_name(operand2(self))+*\n'
elsif operator(self) = "minus'

result +:= code_name(operandl(self))+‘—'+code_name(operand2(self))+\\n'
elsif operator(self) = ‘multiply'

result +:= code_name(operandl(self))+‘*'+code_name(operand2(self))+‘\n‘
elsif operator(self) = ‘plus’

result +:= code_name(operandl(self))+‘+'+code_name(operand2(self))+‘\n'
else

assert False
end

endf
Name counter : Integer := 0

func new code name -> String
Name counter +:= 1
return ‘temp'+mkstr(Name_counter)

func display(self : Unumber) —-> Unumber
Code string +:= code for(self)+ put '+code_name(self)+‘\n'
return self

func divide(self : Entity, other : Entity) -> Unumber
return new_unumber(‘divide', self, other)

func minus (self : Entity, other : Entity) -> Unumber
return new_unumber(‘minus', self, other)

func multiply(self : Entity, other : Entity) —-> Unumber
return new_unumber(‘multiply', self, other)

func plus(self : Entity, other : Entity) —-> Unumber
return new_unumber(‘plus', self, other)

Saicsit ‘96 61

Efficient State-exploration

J. Geldenhuys
Department of Computer Science
University of Stellenbosch, Stellenbosch 7600

Abstract

The exploration of states is an important element of many problems.
Many problems share properties which allow the formulation of general
strategies for state exploration. This article examines these strategies with
reference to the problem of deadlock detection in labelled transition sys-
tems. The main issues are discussed and four major tasks are identified:
state generation, scheduling, state storage, and state compaction. Empir-
ical data is presented, optimizations and special restrictions are discussed
and, finally, the results are generalized.

1 Introduction

The exploration of states is an important element of many problems. In many
cases the efficiency of a solution depends on the state exploration techniques
employed. A significant number of these problems share properties which can be
exploited to select more efficient search techniques. Examples of such problems
are graph algorithms, model checking, and optimization problems. This article
examines these strategies with reference to the specific problem of detecting
deadlock in a labelled transition system.

Important issues such as depth-first vs. breath-first exploration, on-the-fly
techniques, the effect of interleavings and optimizations are investigated. Sec-
ondly, four major tasks are identified: state generation, scheduling, state storage,
and state compaction. Thirdly, empirical data is presented to illustrate the issues
raised and their application to deadlock detection. Possible optimizations (e.g.,
using partial order methods to prune the state graph), and special restrictions
(e.g., fairness) are discussed and, finally, the results are generalized.

2 The problem

A state is a canonical description of the status of a system. It uniquely iden-
tifies the values of program counters, variables, queue contents and other data
structures. To solution to many problems is the identification of a single state

Saicsit ‘96

63

which has a certain property. For example, in computer chess the object is to
find the state in which the potential for a win is at a maximum. A significant
number of these problems share the following properties:

e The state space is extremely large, states themselves are extremely large,
and/or states are time consuming to generate.

e The entire state graph may have to be traversed to solve the problem.

e Tt is possible to ignore subgraphs based on information obtained during
runtime.

e When a state is revisited, the revisited subgraph is not re-explored.
e A non-probabilistic solution is preferred/required.

Examples of such problems are graph algorithms (e.g., Tarjan’s algorithm for
finding strongly connected components), model checking, optimization problems
(e.g., network routing, computer chess, and scheduling), theorem proving, a-nd
code optimization. The rest of this article will focus on the deadlock detection
problem for labelled transition systems as a typical example.

Deadlock detection

A labelled transition system (LTS) is a tuple (S,X, A, so) where S is a set of
states, ¥ is a set of actions (or transitions), the nexst state relation A C SxX xS,
and the initial state sp € S. An LTS can be represented as a state graph by
taking S as nodes and ¥ as edges. A path is a sequence of states s1, 52,53, -
so that for each i there is a transition t; € ¥ with (i, ti,Sit1) € A. Paths
may be infinite. To detect deadlock in an LTS the state graph is searched for a
node with an out-degree of 0, or equivalently, with no successors. Such a nO('ie
represents a state with no enabled transitions, i.e., a deadlock state. We V&flll
restrict ourselves to LTSs with a finite set of states, but techniques for infinite
LTSs exist [4]. An LTS provides a convenient way to describe programs and to

check their properties.

Important issues

How are deadlock states found? One possibility is simulating the behaviour of
the LTS. The algorithm starts in state so and randomly selects transitions to
execute. The resulting path of states is a random walk through the state graph
which terminates when a deadlock state is found. Heuristics can be used to
guide the selection of transitions in order to improve the probability of finding
deadlock. However, the process may carry on for an indefinite time. It cannot
be shown that an LTS is deadlock-free unless all its states have been visited. If
all states must be visited, they may as well be generated systematically.

64

Saicsit ‘96

In [5] the systematic generation of states is accomplished by calculating the
state graph, storing it in memory, and then checking its properties. Deadlock
may occur after the first few transitions, but unfortunately the entire state graph
must be calculated for every run. It also places an upper bound on the size of
LTSs that can be checked since the entire state graph must fit into memory.

It is a better idea to make the search dynamic: states must be generated on
the fly as the state graph is explored. Cycles in the state graph must be detected.
If no provision is made for cycle detection, the search will not terminate but
will re-explore the first cycle it finds continuously. There are two methods
of exploration: breadth-first and depth-first. Breadth-first search is useful for
finding the shortest path that violates the specification. This is desirable but not
essential in detecting deadlock. Unfortunately, breadth-first not only requires
more space than depth-first search, but cycles in the state graph can only be
detected by comparing each new state to all previously visited states. States
can also be represented implicitly, e.g., through equivalences classes. Impressive
results have been reported for symbolic model checking, a technique based on
breadth-first search and implicit representation [3]. Depth-first search is the
method of choice for deadlock detection and model checking algorithms. A
single path is maintained on a stack. New states are pushed onto the stack as
they are explored and popped from the stack once they have been fully explored.

The central problem associated with searching problem spaces is that of state
ezplosion: the number of states grows exponentially in the number of processes
and the degree of non-determinism. The cause of this is that all interleavings of
transitions must be explored. A set of n independent transitions can be ordered
in any of n! ways. One approach to this problem is to break an LTS up into
smaller subsystems and to check them independently. An important group of
reduction techniques is based on equivalence between the original and reduced
state graphs [12]. The equivalence makes it possible to derive a set of conditions
under which certain paths can be ignored.

3 Tasks

State generation

To describe an LTS a modeling language ESML (Extended State Machine Lan-
guage) is used. ESML is based on CSP [8] and Joyce [1] and was designed
to facilitate complex data structures. Subranges, enumeration types, records,
array and lists are supported. An example of a small model is shown in Figure 1.

In a first implementation the ESML code was translated to Modula-2 and
compiled to form the state generation module. This module is then linked to the
rest of the system and executed to detect deadlock. This technique is standard
practice [10, 13]. However, the translation of code from one level of abstraction
to another is complex and therefore it is difficult to find errors.

Saicsit ‘96

65

MODEL ProducerConsumer;

TYPE int = 0..1; chan = {msg(int)};
VAR ch: chan;

PROCESS Producer (OUT c: chan);
BEGIN

DO TRUE -> c!msg(0)

[J TRUE -> clmsg(1)

END
END Producer;

PROCESS Consumer (IN c: chan);
VAR x: int;
BEGIN

DO TRUE -> c?msg(x) END
END Consumer;

BEGIN
Producer(ch); Consumer(ch)
END ProducerConsumer.

Figure 1: An ESML model of a producer and consumer.

More recently the use of an abstract machine was investigated [6]. An ab-
stract machine was designed to support model checking. ESML is translated
to abstract machine instructions that are executed by an interpreter to gener-
ate states. This approach has proven very successful in the domain of compilers
[11, 14]. The code for this system is much simpler and more reliable since instruc-
tions can be shown to be correct independently of one another. The abstract
machine has 47 instructions and supports multiple processes, inter-process com-
munication, complex data structures such as lists and non-deterministic choice.
It has a memory of 4000 words which is used to store the program code, vari-
ables and stack for evaluating expressions. The variables are compacted to form
the state which corresponds to the state of the LTS (Figure 2).

The machine performs two basic operations: it can Ezecute to produce the
next state from the current state. If the next state has already been explored
(and is being revisited), or forms a cycle in the graph, or does not exist, the
machine falls back into the previous state and returns a value to indicate what
it is doing. It can also Backtrack into the previous state.

66

Saicsit ‘96

store

program
code
state

1001011101

variable
space

expression
stack

4000

Figure 2: The abstract machine memory layout.

Scheduling

As the depth-first search algorithm explores the state graph, the states are
stored on a stack. As a new state is explored, it is pushed onto the stack. Once
a state has been fully explored it is removed from the stack. The stack contains
the path that is currently being explored. If deadlock is detected, the stack is
dumped to provide the user with the path that led to the error. Storage of the
current path allows the system to detect cycles. When a new state is added to
the stack, it is first checked to make sure that is not already present. If it is
present, a cycle is reported and the state is not added to the stack.
. The current path plays an important role when falling back into states. Once
a state has been fully explored, the machine state must be restored to that of
the predecessor state so that other states can be explored. The state itself is
already stored on the trace, but the machine has other data structures that
must also be returned to their prior state. The program code does not change
and the expression stack is always empty when a transition executes. To store
the entire variable space would be impossible since it can be very large. It is
possible to extract the variable space from the compacted state, but this would
be time-consuming. The last option is to store only the changes made to the
variable store. As variables are changed, the compacted state is updated and
the changes are recorded on the stack. When falling back, the necessary changes
are made undone.
If the machine is returned to exactly its previous state, it would select the

Saicsit ‘96

67

Stack
(50,02, t2)
(s2,03,t3)
(53,0z,tz)

Figure 3: The stack contains the current path

same transition over and over again. The stack therefore also stores the last
transition executed. When falling back this information is used to select.; the
correct next transition. In this way transitions are scheduled by the machine.

State storage

As explained above, the depth-first algorithm will re-explore a state if it is
revisited. To prevent this unnecessary work, visited states must be stored.
eral options exist:
SevOne ppossibility is the use of binary decision diagrams (BDDS). [2]. A BDD
is a data structure that represents a boolean function, or altern_atlvely a set of
binary words. Each time a state is visited, its compacted state 1s.added to the
BDD. An insert operation takes O(m) time, and a lookup operation O(logm),
where m is the size of the diagram. The size depends on the conten‘Fs of -the
BDD: if entries are similar, the diagram is probably compact; if entries differ
greatly, it may grow to up to 27~1 nodes (n is th.e length of the state vector
in bits). When the diagram grows too large to fit into memory, the search has
to be abandoned, because states cannot be deleted. As th_e size grows, so does
lookup and insert time. Unfortunately it is difficult to predict the behav1our. of a
BDD. The order of the variables play an important role, but to find the optimal
order is prohibitively expensive. BDDs are also known to perform ba.dly when
they are used to store counter variables. Therefore BDDs are not suitable for
torage of states. '
thez sec%)nd possibility is the bit vector technique [9]. It uses the -avallable
memory as a large array of bits. A state is hashed to an afldress (or bit vecto_r)
into the array and the particular bit is set. When the state 18 encount.ered again,
the bit is tested to detect whether the state is being revisited. In t.hls.way. each
state is associated with a single bit. The technique relies on the distribution of
the hash function to prevent collisions. If, however, two states hash to the same

68

Saicsit ‘96

address, the first state will set the bit when it is visited, and the second state
will be erroneously ignored. Although the probability of a collision is small, it
grows as the number of states grow. Of course, the user will never know if a
collision has occurred and must always recheck results. Suggestions have been
made on how to improve the reliability of this method (using two bits per state,
for example) [15], but it remains an approximate technique and is usually only
resorted to when other techniques fail.

The third and final possibility is a cache of states. Unlike the first two
methods, a cache stores states explicitly in a table. It therefore requires more
memory per state. It is almost as fast as the bit vector technique: hashing
is used to locate entries in a table of states. Collisions are resolved through
open hashing: states are rehashed until they are found in the cache or an open
slot is found in which to insert them. As the cache grows fuller, collisions
increase and it becomes necessary to replace older states to insert new ones. A
random replacement strategy was found to be the most effective. When states
are replaced and subsequently revisited, they are not found and are re-explored.
In such cases unnecessary work cannot be avoided but the re-exploration of the
subgraph does not continue long since successor states will still be present in
the cache. It has been shown that a cache works well for models with 2-3 times
the number of states in the cache[7).

As a further optimization we have incorporated the stack in the cache. This
means that new states are not searched for twice (in the stack and in the cache)
but once only. A skeleton stack is used to maintain the order of the stack entries,
but the states are stored along with the other cached states. Stack states are
never overwritten because when the depth-first search falls back into them, they
have to be present.

State compaction

Since the size of memory is such a serious limitation of the technique, it makes
sense to expend effort to make states as small as possible. Compression al-
gorithms (e.g., Huffman encoding, the Lempel-Ziv family of algorithms) can
reduce state vector size, but are unsuitable for two reasons: (1) compressed
states would vary in length and would consequently be difficult to manipulate,
compare, and store efficiently; and (2) compression would slow the system down,
since after every transition the entire state has to be compressed, even when
only a small part of it has changed.

An alternative method, called state compaction, attempts to minimize the
number of bits assigned per variable. few bits per variable as possible. Consider
the following declarations:

VAR
c: (red, green, blue, white, black);
b: BOOLEAN;

Saicsit ‘96

69

p: RECORD x, y: 0..149 END;

Typically a compiler for a programming language, allocates storage space in
multiples of 8 bits (1 byte) and would allocate 4x8 = 48 bits for the declarations
above. At this level bits are wasted, e.g., variable c is allocated 8 bits but uses
only 5 values out of a possible 256. The deadlock detection system needs to
be more frugal when it comes to memory allocation, and must allocate variable
storage space in multiples of 1 bit. When bits are assigned per variable, a
variable of size s can fit into [log, s] bits. This method would allocate 20 bits
to the variables above.

Storage allocation can be optimized even further. Record p has been al-
located 16 bits in all three cases above. Its fields x and y, however, can only
assume 150 values each, and 150 x 150 unique values will fit into [log, 15021 =15
bits. When this idea is applied to the declarations as a whole, they can be stored
in [log,(5 x 2 x 150 x 150)] = 18 bits.

A compacted state containing the variables above is calculated as

S =c+5(b+ 2:(px + 150-p.y))
=c+ 5b+ 52px+ 52-150-p.y

Tt is clear from the first line that c can range over its five values 0. .. 4 without
affecting the other variables. Similarly, the other variables can range over their
respective values without influencing c. Variable b for instance, can assume its
values 0 and 1 without affecting c or the variables to the right. Associated with
each variable z are a lower factor z; and higher factor zj, e.g., for variable b,
b; = 5 and by = 5-2 = 10. The lower factor “shields” the smaller terms to the
left and is useful for isolating these terms, e.g., Smodb; = c. In the same way
the higher factor can be used to obtain a certain term, e.g., Smodbp =c + 5b
from which b is obtained by dividing by b;: (¢ + 5-b)divb, = b. Two basic
operations must be performed on S:

1. To obtain the value of variable z the higher factor is used to strip out
all variables to the right of z and the lower factor is used to strip out all
variables to the left of z:

z=(S mc;d zp) div z;
2. To change the value of a variable, if the value of z changes to z', the
updated state vector is
S'=8 + z-(2' —2)
This operation is the combination of two steps: first the old value is re-

moved (by subtracting z;-z) and then the new value is inserted (by adding
z;-2').

There is no run-time overhead involved in calculating the lower and higher
factors: they are computed beforehand and stored in a table. The cost of a
variable lookup is therefore two multiplications (operation 1) and that of a
variable change is two additions and a multiplication (operation 2).

The idea of state compaction was first explained in [13] where its use was
limited to complex data structures such as lists, arrays and records. In the
current implementation, state compaction is applied to entire states with great
effect. In the example above the state was compacted to 38% of the size of the
original. In general this percentage varies from

4 Implementation

The system described above was implemented in Oberon. The Oberon language
was chosen because it is highly portable and runs on a range of platforms.

Module Lines | Code size
State generator 803 17132
Scheduler 221 3040
Storage 142 1568
Compaction 161 2196
Total 1327 |© 23936

The system was used to check for deadlock in a model of the classical dining
philosophers problem, a model of an elevator system, and a model of a process
scheduler. The following results were obtained on a Silicon Graphics machine
with 64Mbytes of memory and a 150MHz processor:

Model States Trans. | Time | Trans./sec
Dining philosophers | 420096 | 2338593 | 123.52 18932.91
Elevator system 1633032 | 9086599 | 439.81 20660.28
Process scheduler 2016168 | 9908147 | 450.07 22014.68

The process scheduler model produced nearly 107 transitions and was checked
at 22000 thousand transitions per second. Models of up to 4.2 x 10° states
(19.4x 108 transitions) have been checked to date on the same machine. These
figures are on par with state of the art systems and represent the current limits
of these techniques.

Analysis of the system during a typical run shows the following use of time:

Module % of time
State generator 50.43
Scheduler 10.90
Storage 21.63
Compaction 15.17
Other 1.87

70 Saicsit ‘96 Saicsit ‘96 ' 7

As expected the generation of states takes the most time. For most of the
other problems mentioned in Section 2 state generation is less expensive in terms
of time and even more states can be explored per second.

5 Conclusion

The techniques that have been described are based on the properties outlined
in Section 2. With a little modification they can be applied to a wide range of
problems. State generation is the central issue when addressing a new problem.
In the case of deadlock detection this was addressed throught the use of an
abstract machine. The scheduling and storage mechanism is general enough to
be reused in other cases, but state compaction is based on our knowledge of
what a state looks like. It is however very important to perform some form of
compaction on states, in order to obtain satisfactory results.

References

[1] P. Brinch Hansen. Joyce—A Programming Language for Distributed Sys-
tems. Software—Practice and Experience, 17(1):29-50, January 1987.

[2] R. E. Bryant. Graph-Based Algorithm for Boolean Function Manipulation.
IEEE Transactions on Computers, C-35(8), August 1986.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking: 10%° States and Beyond. In Proceedings of the
5th IEEE Symposium on Logic in Computer Science, pages 428-439, 1990.

[4] O. Burkart and Y.-M. Quemener. Model-Checking of Infinite Graphs De-
fined by Graph Grammars. Technical Report 995, Institut de Recherche en
Informatique et Systémes Aléatoires, May 1996.

[5] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchroniza-
tion Skeletons using Branching Time Temporal Logic. In Lecture Notes in
Computer Science #131. Springer-Verlag, 1981.

[6] J. Geldenhuys. A Reliable and Efficient Abstract Machine for Program
Verification. Master’s thesis, University of Stellenbosch, In preparation.

[7] P. Godefroid, G. J. Holzmann, and D. Pirottin. State Space Caching Re-
visited. In CAV’92: Proceedings of the 4th International Conference on
Computer-Aided Verification, pages 175-186, June 1992.

(8] C. A. R. Hoare. Communicating Sequential Processes. Communications of
the ACM, 21(8):666-677, August 1978.

72

Saicsit ‘96

[9] G. J. Holzmann. An Imporved Protocol Reachability Analysis Technique.
Software—Practice and Ezperience, 18(2):137-161, February 1988.

[10] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall Software Series, 1991.

[11] A. S. Tanenbaum. Implications of Structured Programming for Machine
Architecture. Communications of the ACM, 21(3):237-246, 1978.

[12] A. Valmari. Error Detection by Reduced Reachability Graph Generation.
In Proceedings of the 9th European Workshop on Application and Theory
of Petri Nets, pages 95-112, 1988.

[13] W. C. Visser. A Run-time Environment for a Validation Language. Mas-
ter’s thesis, University of Stellenbosch, October 1993.

[14] N. Wirth. Pascal-S: A Subset and Its Implementation. Technical report,
ETH, Ziirich, June 1975.

[15] P. Wolper and D. Leroy. Reliable Hashing without Collision Detection.
In CAV’93: Proceedings of the 5th International Conference on Computer-
Aided Verification, 1993.

Saicsit ‘96

73

A Validation Model of the VMTP Transport Level
Protocol

HN Roux and PJA de Villiers
Department of Computer Science
University of Stellenbosch, Stellenbosch 7600

Abstract

The implementation of protocols can be speeded up by incorporating
formally validated designs in documents that describe new protocols. Un-
fortunately, this seldom happens in practice. It is proposed that a formally
validated model of a protocol be developed before an implementation is at-
tempted. Although this may seem like additional work, this approach can
potentially reduce development time because misconceptions are ruled out
at an earlier stage. Protocol validation is an established field of research.
The techniques are mature enough to allow routine industrial applications.
Currently suitable case studies are needed to introduce these techniques
to industry. In this paper we describe the development of a validation
model of VMTP, a transaction-based protocol that was used as a basis to
develop an interprocess communication facility for a microkernel. While
the validation of a specific protocol is a one-time event, the development
techniques are of more lasting value and are applicable to other protocols.

1 Introduction

The validation of computer protocols has been a field of increasing activity
during the past twenty years. Human creativity is required to design effective
protocols, but the analysis of protocols can be automated. A vast literature
exists on the topic of formal protocol analysis and a few years ago the first book
appeared that describes the principles involved [3]. With such a complex topic,
however, case studies are essential to introduce newcomers to this fascinating
and important area. This paper describes such a case study.

VMTP (Versatile Message Transaction protocol) is a relatively new proto-
col that was developed as an alternative to TCP[5] or ISO TP4[4]. Local area
networks are highly reliable and this is exploited by using group acknowledge-
ments and selective retransmission. VMTP directly supports the client-server
model of distributed processing. In this paper we describe the development of
an efficient communication mechanism for a microkernel with VMTP as a basis.
Some features of VMTP were ignored since they were not needed.

Saicsit ‘96

75

To bridge the gap between the informal description of VMTP in [1] and
the implementation, formal models were developed and analysed by using a
computer-aided validation technique. We focus on this stage of the development.
In Section 2 a brief overview of VMTP is given. Section 3 gives an overview of
the development strategy and models for an important component of VMTP are
described in Section 4. Examples of correctness properties that were validated
are given in Section 5 and we conclude by discussing the experience gained
during the project.

9 The VMTP protocol

A brief description of VMTP is included here to provide the necessary back-
ground for understanding the validation models. The full protocol description
can be found in [1]. The VMTP protocol offers several features to improve the
performance of client-server applications. Requests are issued in the form of
message transactions, which may consist of one or more packets. Each packet
has a header with fields to identify the transaction to which it belongs and the
number of packets in the transaction. The protocol can be divided into the
following interacting components: client support, server support and manage-
ment. Separate models were developed for each component and these separate
validated components served as a blueprint for implementation.

The purpose of the client support component is to accept requests from
client processes and transmit these requests to servers in a distributed system.
The start state (idle state) of the client support component is labelled Idle (see
Figure 1) to indicate that control is inside some client process. Transactions may
consist of up to 32 packets, depending on the amount of data to be transferred.
For maximum efficiency, the protocol rules for single packets are extremely
simple as can be seen in Figure 1. After accepting all packets of a request
message, control reaches the state Awaiting Response. The arrival of a single
response packet switches control back to the Idle state. On the other hand, the
first of a sequence of packetsin a multi-packet response message transfers control
to the state Receiving Response where the remaining packets are accepted. Short
timeouts are used to trigger selective retransmissions of lost packets, with a
longer timeout for outstanding transactions.

The server support component interacts with client support to deliver trans-
actions at their destinations. The start state of this component is labelled Await
Request to indicate that a new request can be accepted. When the final packet
of a request has been received, control switches to a state labelled Processing
Regquest to indicate that the server is executing. The response is handled in a
similar way as shown in Figure 2. Explicit acknowledgement of transactions is
optional and may be requested by clients. However, in most cases the arrival of
a response Serves as an implicit acknowledgement. A single short packet is used
to indicate which packets to retransmit.

76

Saicsit ‘96

7middleresp "
/ Retransmit
Request
Iretransresp

finalresp & lackresp,
?inaltimeout,

7inalresp

Receiving

Response
P Mirstresp

Isinglereq

Awaiting
Response

7finaltimeout, ?singleresp

7retransreq

More
Requests

Ifirstreq
7timeout

Ifinalreq

Ifirstreq

Figure 1: State diagram for VMTP client support

7singlereq

Saicsit ‘96

77

7finaltimeout,
Packresp

Ifirstresp

’/) Imiddleresp
More

Responses

Isingleresp

Nimeout
Iretransresp

Responded

Ifinalresp

Ifirstresp

Isingleresp

Processing

Await ?singlereq

Request

Y

Request
7middlereq

7finaltimeout

?finaltimeout,
inalreq

Receiving

Hirstreq Request

7timeout Iretransreq

Retransmit
Request

Figure 2: State diagram for VMTP server support

78

Saicsit ‘96

3 Formal specification and validation

Most protocols are published in the form of natural language descriptions and
diagrams. The problem is that such informal descriptions are often ambiguous
and cannot be analysed for correctness. To address this problem, protocol spec-
ification languages were developed. SDL, Estelle and Lotos are well-known ex-
amples. A formal specification of a protocol can be seen as an abstract program.
The idea is to suppress the implementation detail, but to model the control flow
explicitly. Obviously, a formal notation does not prevent the specification of
protocols that are incorrect or even impossible to implement. Validation is
necessary to ensure correctness.

Formal specification languages were designed before automated validation
techniques were feasible for large protocols and unfortunately the well-known
specification languages include infinite constructs that cannot be validated effi-

ciently or that may even be impossible to validate in some cases. Consequently,

it is necessary to restrict these notations to allow validation. However, many
designers of validation tools prefer to experiment with their own notations that
are designed for efficiency. The validation language used in Section 4 is such an
experimental notation.

The protocol implementation technique proposed in this paper consists of
three steps:

e Study an informal description of the protocol and use a formal validation
system to build models of all non-trivial mechanisms

e Refine and combine these separate models to produce a validated model
of the full protocol

e Use the validated model to derive an implementation

The goal of the first step is to check one’s understanding of the protocol de-
scription. The rigour of this process can eliminate many potential errors before
any code is written. The goal of the second step is to produce a document that
describes the protocol precisely. The final model should be shown (by using a
computer-aided validation technique) to be free of commonly occurring protocol
errors. The final step is to use the formal description of the protocol (and not the
original informal description) as a blueprint to develop an efficient implemen-
tation. The formal description also serves as documentation and therefore the
completed implementation should preserve the structure of the protocol model.

Application of these techniques is not as clear-cut as outlined above. For
example, it would be a mistake to complete the formal protocol model with-
out trying out some ideas at the implementation level. It is easy to design a
perfectly correct model of a protocol, only to discover that it cannot be imple-
mented efficiently. Simple prototypes of some mechanisms should therefore be
constructed during the modelling process. The first goal should be to discover

Saicsit ‘96

79

an elegant design structure. At this stage, validation should be used mainly to
check for deadlock because a deadlock usually means that there is something
fundamentally wrong with the structure of a design. This should be corrected
as early as possible. Once a suitable structure has been developed, one should
check whether it can be implemented efficiently. To do this, a skeletal implemen-
tation (in the chosen implementation language) should be developed to identify
awkward mechanisms as soon as possible. We have found that it works best to
refine the model and skeletal implementation simultaneously, one serving as a
check against the other.

4 Modelling client and server support

Models are expressed in the experimental validation language ESML. A vali-
dation tool that is based on exhaustive state exploration has been developed
to check models expressed in ESML. Only those features of ESML needed to
understand the models will be explained here. A full description of the language
can be found in [2]. ESML is a process oriented language. Concurrent processes
communicate via unidirectional channels (A and B in Figure 3) that are accessed
via ports (in and out). All processes in ESML are executed concurrently and
synchronous message passing is used for synchronisation. A send operation is
indicated by “” and a receive operation by “?”. Dijkstra guarded commands
are used as control structures. Loops (indicated by the reserved word “DO”)
execute until all guards are false. Communication commands may be used in
the guards of a special “POLL” loop that is repeated until at least one guard
is true.

The first model for client and server support ignores multi-packet transac-
tions. After initialisation, two processes Client and Server repeatedly exchange
packets. A variable of type State is used in each process to indicate the current
state of the protocol. Two auxiliary variables msgsent and msgreceived are used
to record the occurrence of two important events.

Even this simple model was useful, because it determined a basic structure
that could be shown to be deadlock free. It was also shown that all specified
events could happen and that all transactions sent were correctly received. The
temporal logic CTL is used to express corréctness claims. This makes it possible
to state properties such as “event a will happen eventually” or “property 8 will
always hold”. For example, the CTL formula

AG(Client.msgsent = AF (Server.msgreceived))

was used to specify that all transactions will eventually be transmitted. In-
tuitively the formula means that for all execution sequences (signified by the
operator AG), when a message is sent, it will eventually (signified by the oper-
ator AF) be received. This model generated only 56 unique states.

80

Saicsit ‘96

MODEL VMTP;
TYPE Msg = {req, resp};
VAR A, B: Msg; (* channel definitions *)

PROCESS Client(IN in: Msg; OUT out: Msg) ;
TYPE State = processing, awaitresp;
VAR s: State; msgsent: BOOLEAN;

BEGIN
(* initialise *)
s := processing; msgsent := FALSE;

(* continually react to events *)
D0 s = processing ->

out!req; s := awaitresp; msgsent := TRUE
(] s = awaitresp ->
in?resp; s := processing
END
END Client;

PROCESS Server (IN in: Msg; OUT out: Msg);
TYPE State = processing, awaitreq;
VAR s: State; msgreceived: BOOLEAN;

BEGIN
(* initialise *)
s := awaitreq; msgreceived := FALSE;

(* continually react to events *)
DO s = awaitreq ->

in?req; s := processing; msgreceived := TRUE
[] s = processing ->
out!resp; s := awaitreq
END
END Server;
BEGIN
Client(A, B); Server(B, A)
END VMTP

Figure 3: A high-level model of single packet requests

Saicsit ‘96

81

Various more detailed models were developed, each designed to zoom in on
some mechanism by adding detail ignored in earlier models. The behaviour of
timeouts were studied by extending the model shown in Figure 3. There are
several ways to model timeouts. A special process can be used to represent the
“environment”. This process emits timeouts as messages. To indicate that a
message can be lost (and trigger a timeout) a POLL command can be used as
shown below. The POLL will terminate when either a response message arrives
or a timeout occurs, which is a natural way to model reality.

POLL in7resp -> ...
[] in7timeout -> ...
END

Another approach is to couple timeouts to the communication channel which
is modelled by a separate process. This process receives messages from its
input port and can choose nondeterministically whether to transmit them via
its output port or to transmit timeouts instead. Such a channel can be modelled
by the ESML code shown below. The POLL command has three guards that
may be selected depending on the kind of message that becomes available. A
response message may therefore be passed on or a timeout may occur, since any
one of the last two guards may be selected nondeterministically.

PROCESS Ethernet(IN in: Msg; OUT out: Msg;
BEGIN

POLL in7req -> outl!req

[1 in?resp -> out!resp

[l in?resp -> out!timeout

END
END Ethernet;

A model that uses the latter approach to model timeouts is shown in the
appendix. The advantage of this approach is that it has one fewer process
because the environment is not modelled explicitly. This reduces the number
of states generated by the model from 7717 to 1248. This is hardly significant
for such simple models, but a large number of concurrent processes may cause a
severe state explosion when these models are refined. Every technique that can
reduce the number of states generated by a model should therefore be exploited.

The final model for client and server support, generates about 7 million states.
It is much more detailed than the model shown in the appendix, although the
same structure could be preserved, even in the implementation.

82

Saicsit ‘96

5 Experience

A number of important correctness claims were validated. These include free-
dom from deadlock, response to all transmission requests and correct behaviour
when packets are lost. It would be a mistake to develop a model of a complete
protocol before attempting to validate some correctness claims. Checks to show
absence of deadlock are useful from the start. Other useful checks may show
that some specified events can never happen. The control logic of the model may
be wrong (in which case these “dead” events may well contain errors) or these
events may be superfluous because the conditions that guard their execution
can never become true. Protocol validation models and prototype implementa-
tions were refined simultanco.siy. 1o wa: 2eas, to repeat correctness checks as
more detail were added to the models—the refined models were simply validated
against the same correctness claims.

Some correctness claims require substantially less computing resources to
validate than others. Absence of deadlock is a useful property that is easy to
check. An example of a more complex property to validate is that all transac-
tions that represent requests will eventually be transmitted successfully. This
property can be specified by a CTL formula of the form AG(p = AFq), where
p represents the fact that a transaction has been accepted from a client and g
indicates that the specific transaction has been delivered to a server. For the
complete model of VMTP 6.9 million states had to be explored to check this
property. This required about 30 minutes processing time on a Silicon Graphics
Indy workstation.

6 Conclusions and future work

We have described a strategy to implement protocols when no formal description
is available. Most protocol descriptions are still published as informal descrip:
tions which. 2t best, include some diagrams. It is proposed that the informal
descriptior 1ld be used to develop a model of the |protocol that can be for-
mally validaicd. This is an effective way to check that the protocol actually
works. Many protocols contain errors and it is far less time consuming to find
the errors before an implementation is attempted. The validated protocol model
is then used as documentation to develop an efficient implementation. In other
words, it is proposed that informal descriptions should never be used directly
to develop implementations. It can only be hoped that in the near future new
protocols will be published in formally specified form. This will save time, since
a new protocol can be validated once and for all. At the moment, there is no
choice: a new protocol for which a validated formal description is not available
may contain errors that may go undetected until a product has been in use for
quite some time.

The VMTP protocol was selected as a basis to derive an efficient interprocess

Saicsit ‘96

83

communication facility for a microkernel. No formally validated specification
was available for VMTP, but a design for the new communication facility was
developed and formally validated. Some features of VMTP were not used, but
it should be possible to develop a validated model of full VMTP by using the

techniques described in this paper.

Appendix: A model of VMTP timeout behaviour

MODEL VMTP;
TYPE Msg = {req, resp, timeout};
VAR A, B, C, D : Msg;

PROCESS Client(IN in: Msg; OUT out: Msg);
TYPE State = processing, awaitresp;
VAR s: State; msgsent: BOOLEAN;
ResponseReceived: BOOLEAN; TimeUp: BOOLEAN;
BEGIN
s := Processing; msgsent := FALSE;
responsereceived := FALSE; timeup := FALSE;
D0 s = processing ->
POLL out!req -> s := awaitresp; msgsent := TRUE
[] in7resp -> SKIP
END
[s = awaitresp ->
POLL in7resp -> SKIP; responsereceived := TRUE
[] in7timeout -> SKIP; timeup := TRUE

END;
s := processing
END
END Client;

1

PROCESS Server(IN in: Msg; OUT out: Msg);
TYPE State = processing, awaitreq;
VAR s: State; msgreceived: BOOLEAN; responsesent: BOOLEAN;
BEGIN
s := awaitreq; msgReceived := FALSE;
responsesend := FALSE;
DO s = awaitreq ->

in?req; s := processing; msgreceived := TRUE
[l s = processing ->
out!resp; s := awaitreq; responsesent := TRUE
END
END Server;
84 Saicsit ‘96

PROCESS Ethernet(IN in: Msg; OUT out: Msg);
BEGIN
DO TRUE ->
POLL in7req -> out!req
[] in?resp -> out!timeout
[1 in7resp -> out!resp
END
END
END Ethernet;

BEGIN
Client(D, A);
Server(B, C);
Ethernet(A, B);
Ethernet(C, D)
END VMTP;

(* CTL formula to claim that when the client sends a
message it will either be notified that the message
has been received or a timeout will occur *)

ASSERT AG(Client.msgsent =>
AF(Client.responsereceived OR Client.timeup))

References

[1] D. R. Cheriton. VMTP: Versatile Message Transaction Protocol. RFC 1045,
Stanford University, 1988.

[2] P. de Villiers and W. Visser. ESML—A Validation Language for Concurrent
Systems. In Judy Bishop, editor, 7-th Southern African Computer Sympo-
sium, pages 59-64, July 1992.

[3] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, Englewood Cliffs, New Jersey, 1991.

[4] ISO. Information Processing Systems—Open Systems Interconnection: Ba-
sic Reference Model. Standard 7498, International Standardization Organi-
zation and International Electrotechnical Committee, 1981.

[5] J. Postel. Transmission Control Protocol. RFC 793, University of Southern
California, September 1981.

Saicsit ‘96

83

AUTOMATED NETWORK MANAGEMENT USING ARTIFICIAL INTELLIGENCE
M. Watzenboeck
University of Botswana-Gaborone
E-mail: watzenbo@noka.ub.bw

Abstract

Automating network management is regarded as a prerequisite for further plant automation. Artificial intelligence
techniques, such as case based reasoning, topological reasoning and automated learning enable automated network
and plant operations and also support tool development for general automation..

1 INTRODUCTION

The approach presented here was initiated by Sumitomo Metals and IBM Japan in 1987. It has achieved a
satisfactory level of automated network operations in 1989. Since then the main emphasis lies with tool
development for plant operations automation and cooperation enablers.

2 AUTOMATING AUTOMATION

2.1 Case-based Reasoning for Network Automation

The implementation of a computerized helpdesk via case-based reasoning was used a vehicle to achieve the
automation of network functions, such as performance monitoring, defective path bypassing and overcoming
slowdown effects by buffersize management. Since the AAAI-91 the productivity increase in knowledge
engineering by separating knowledge into generic and episodic knowledge is studied worldwide and led among
many others to Petrak's VIE-CBR[1]. '

2.2 Multimedia Front-Ends for Network Management Systems

Shared knowledge of network data enable the most productive use for network management, if skill differences in
interpretation through different users are bridged by multimedia support.

Ganesan K. et al.[2] presented the idea of multimedia frontends for networking expert systems on the IEEE
Globecom '87 in Tokyo. In CA-World '95 in New Orleans Computer Associates presented the Betaversion of a
network management system CA-Unicenter/TNG(The New Generation). J. Lanier's design offers virtual
reality(VR) elements and 3D-animations. Applying keyboard, joystick and mouse allows the user to travel into
the critical spots of his enterprise guided by a graphic interface. Zooming can reach defective system or network
components, advice for repair is given. Traditional network management tools such as HP Open View or Sun-Net
Manager can be integrated. The network management part itself is based on the NetDirector of UB Networks For
reference see Veitl et al.[3], Damper et al(eds.) on Multimedia Technologies and Future Applications[4],and [5].
2.3 Integrating a Communications Network for Manufacturing Applications

The ESPRIT Project 7096 Computer Integrated Manufacturing and Engineering(CIME) started in 1993 and is
based on an open software platform and using standard interfaces(MAP 3.0) . The network management component
supports the configuration of the network, monitors its performance, localizes and diagnoses defects and suggests
repair actions. Flexible manufacturing is supported by Agile Intelligent Manufacturing Systems(AIMS). Those
comprise self-controlling production islands and autonomous-cooperative structures supporting man-machine
communication. The peripheral system parts such as CAD, production planning and maintenance are fully
integrated[5].

2.4 Group Decision Support and Quality Management

The quality of a product or a service is ensured through quality control meaurements(ISO9001) and
guidance(ISO8402). Total quality management changes the focus from the defect-free product to the process.
Permanent quality monitoring and improvement becomes an obligation of top management. Process improvements
require the participation of all people engaged in the process. The performance of networks is benchmarked against
service level agreements. Deviations may necessitate negotiations for new agreements if technical solutions are out
of sight. Lincoln[] argues: "The parallel between the structures of advanced production plants and Japanese
organization is explained by the substitution in both cases of a social for a technological imperative." Greene R.[2]
describes the Al based social delivery vehicles suitable for this approach: auxiliary knowledge engineers,
application qualification tours, tool courses, group readings and coding sessions in Al and cognition mprovement
trainings.

Saicsit ‘96 87

3 SUMITOMO METALS NETWORK AUTOMATION

In 1988 Sumitomo Metals needed to control more than 1000 terminals attached to dual IBM hosts

in an SNA environment with response time requirements below 0.8 seconds. NetView is the product family
offering SNA Management Services. The used version resides on hosts and supports management tasks, such as
configuration, problem and change management, performance monitoring and tuning , accounting and general
network operation. All managed objects are connnected to VTAM mostly via NCP. VTAM is the control point for
management. NetView monitors the network via Session Awareness(SAW), receipt of VTAM messages, reports
from the network components and NetView's command capability The protocol used is the Network Management
Transport Vector(NMVT). Filters can be applied to the NMVT messages. In order to support Sumitomo's RYO
VTAM a gateway has been built to make the non-SNA devices emulate SNA devices. NMVT does not have such
a clean information model as Internet's SNMP and ISO CMIP. Corresponding to their information model but less
structured the NMVT carries protocol messages and their permitted values require lengthy search procedures. Alert
and Response Time monitoring were the major applications for NMVT. Basic Alert subvector and Generic Alert
Subvevtor identify among others alert type, cause of alert and component type. The actual response data is contained
in the RTM subvector. Syntax and semantics of the various objects and their attibutes are defined at multiple places
and make specifications hard to manage. The availability of products for of all seven SNA-layers was deceisive
for the chosen approach.

4 AUTOMATED OPERATIONS USING AI

4.1 A Model for Managing Communication Objects

On the level of the information model no correspondence between SNA's NMTV patchwork and TCP/IP's
Management Information Base(MIB) was achieved and the so the ISO standard Abstract Syntax Notation
One(ASN.1) was not applied for describing the NMTV protocol. The identification of OPS5(=KnowledgeTool)
modules with network management agents allowed dividing the function of network monitoring into logical
modules . Automated Network Administation <=> Management Application(Management Agent)
<=>Managed Object(Monitoring Agent).

The Management Agent employs a Summarization Monitoring Agent(NetView) to collect and filter the network
monitoring information from various Monitoring Agents which are responsible for one or multiple managed objects.
All these functions are provided through Netview.

4.2 The Access to Monitoring Agents

Each network addressable unit in a SNA environment is called a node. In a node there is always a Monitoring
Agent, which the SNA terminology calls Physical Unit(PU).A Management Agent is a pre-configured listener for
the monitored information. The change of pre-selected states in the managed objects triggers events which are
forwarded to the listener without an explicit read request. The events are conveyed in terms of event codes and event
arguments, similar to error codes of computer programs. The accessible information is modeled as hierarchical
objects, the attibutes having complicated data types. The protocol allows searching by filters or browsing through
the hierarchy.

5. Case Based Reasoning for Helpdesk Functions

This function is achieved by a 'fusion’ of data base and expert system techology. The structure ofeach LHS in a
rule is restricted to three conditions fitting into a mask of 214 bytes each and the RHS is restricted to maximally
three actions with maximally 199 bytes, thus allowing the storage of all rules in a relational database. This allows
a straightforward implementation of a learning helpdesk through rule updates in the relational rule data base.

6 BIBLIOGRAPHY

[1] Petrak J.: VIE-CBR: Vienna Case-Based Reasoning Tool, Version 1.0, Programmer's and
Installation Manual OEFAI-94-34

[2]Ganesan, K. et al.:A Multimedia Front-End for an Expert Network Management System

in IEEE Journal, On selected areas in communications, Vol 6, No. 5., June '88

[3] Veitl, M. et al.: Entwicklung multimedialer CBT-Systemw TR-93-4 Austrian Research
Institute for Arificail Intelligence. '

[4] Watzenboeck, M.: Automated Network Management Using Knowledgetool and NetView,
IBM Man. GG24-3435, San Jose, Calif.

[5] COM Software 9/95: CA Unicenter/TNG with virtual reality: "The New Generation"

[6] Malle, K.: Kleinserien rund um die Uhr in: VDI Nachrichten, Produktion Nr. 35, 1.Sept.
1995.

88 Saicsit ‘96

A Framework for Executing Multiple Computational Intelligent
Programs

HL Viktor*+ I Cloete™
hlviktor@econ.up.ac.za; ian@cs.sun.ac.za

+t Computer Science Department, University of Stellenbosch,
Stellenbosch 7600, South Africa

*Department of Informatics, University of Pretoria,
Pretoria 0002, South Africa

Abstract

Computational intelligent programs are capable of discovering interesting relationships contained in
"raw” data. These programs, including artificial neural networks, set covering algorithms and decision
trees, have been successfully used to address a number of real-world problems in, amongst others, the
retail, medical, financial and educational fields. A computationally intelligent program can be very

effective and useful, given that the learning problems are sufficiently narrowly defined and the data set
contains a distribution of attributes favoured by the program.

Many complex real-world problems, however, pose learning problems which cannot effectively be solved
by a single program. These problems may be successfully addressed by using a combination of compu-
tational intelligent programs. A framework, which combines computational intelligent programs into

a computational network, is presented. Employing more than one program potentially leads to more
powerful and versatile results.

1 Introduction

Computational intelligent algorithms, including decision trees, set covering algorithms and
artificial neural networks, learn classification rules from data. These programs are capable of
discovering interesting relationships in the data and usually require little technical knowledge
of the programs. This property provides the benefit that these programs are easy to be used by
domain experts. Computational intelligent programs have been successfully used to address
a number of real-world problems in, amongst others, the medical, financial, agricultural and
educational fields [Fu, 1994], [Towell & Shavlik, 1994].

Computational intelligent methods can be very effective if the learning problem is sufficiently
narrowly defined and the distribution of the attributes contained in the data set favours the
particular program. Many complex real-world problems, however, pose learning problems

Saicsit ‘96 89

which cannot effectively be solved by a single program. The data sets yielded by these
problems contain uncertain and/or incomplete data, are generally very large and complex
and contains dynamically changing data. In view of this, the development of a computational
network that integrate two or more computational paradigms should prove worthwhile. In
addition, the different computational intelligent programs offer complimentary advantages
which may lead to complimentary results. Integrating more than one program thus potentially
leads to more powerful and versatile results.

This paper gives an introductory overview of a framework for executing multiple computa-
tional intelligent programs. In Section 2 the computational intelligent programs which we use
in the computational network, is introduced. A framework, which combines computational in-
telligent programs into a computational network, is presented in Section 3. Finally, in Section
4, some conclusions are reached and future extensions are presented.

2 Computational Intelligent Programs

There is a large amount of literature on computational intelligent approaches and methods,
including [Clark, 1989], [Fu, 1994] and [Quinlan, 1994]. These methods learn concept descrip-
tions from training data sets. The concept descriptions are subsequently tested on previously
unseen test examples to give an estimated accuracy of the concepts learned.

Symbolic methods focus on producing discrete combinations of features, while subsymbolic
methods adjust continuous, non-linear weighting of their inputs. We consider two symbolic
methods, namely set covering algorithms and decision trees. The other two methods combine
artificial neural networks, a subsymbolic method, with (a) symbolic rule insertion and (b)
symbolic rule extraction.

2.1 Set covering algorithms

Set covering algorithms construct concept descriptions by repeatedly generating conjunc-
tive expressions until all positive instances of a concept are covered or some threshold is
reached. One class of covering algorithms, including CN2 [Clark, 1989] as well as BEXA
[Theron & Cloete, 1996] construct conjunctions using a general-to-specific search. In this
approach, the algorithm start with a general concept description and specialise it in steps
until some termination criterion is met. Each conjunction is evaluated according to an error
estimate to select the best conjunct for further specialisation.

2.2 Decision trees

A decision tree generates a classifier by means of a structure that is either (a) a leaf, indicating
a class, or (b) a decision node that specifies some test to be carried out on a single attribute
value, with one branch and subtree for each possible outcome of the test.

A data row (case) is classified by starting at the root of the tree and moving through it until
a leaf is encountered. The decision tree program contains heuristic methods for simplifying
the tree; with the aim of producing comprehensible structures without compromising unseen
cases. The C4.5 decision tree [Quinlan, 1994] is currently considered to be the state of the
art and is used in our computational network.

90 Saicsit ‘96

2.3 Artificial Neural Networks

Artificial neural networks (ANNs) are a class of learning systems that model the human
brain. The network consists of a number of weighted units, which can be one or three types:
input, hidden or output. Units do only one thing, i.e. they compute a real-numbered output
that is a function of real-numbered inputs. Inputs receive the initial numeric attributes from
the environment. Hidden units act as links between the inputs and outputs. The outputs
correspond to the expected outcome of a training set data row. Artificial neural networks learn
the relationships between numeric inputs and outputs by minimising the difference between
the expected and actual outputs via weight adaption. Training of the ANN is done by adapting
weights via a gradient search. In essence, an ANN performs a nonlinear regression.

2.3.1 Knowledge-based ANNs

In this approach prior knowledge is inserted in the network and subsequently refined by ANN
training. In the first step, a set of inference rules that describe the domain knowledge is
gathered, usually from domain experts. In this way, the ANN is able to effectively make use
of prior knowledge to perform well. Secondly, the knowledge is re-represented in an ANN,
and subsequently refined using ANN learning as well as a training data set.

The knowledge defines the topology and weights of the network it creates. The way in which
knowledge is re-represented in an ANN is to individually translate each rule into a subnetwork
that accurately reproduces the behaviour of the rule. Additional nodes may be introduced to
handle disjunctions in the rule set. See [Towell & Shavlik, 1994], [Cloete & Viktor, 1996] for
a description of the rule insertion process. =

2.3.2 Rules from ANNs

The numerical representation of the attributes as well as the ” black boz” nature of the ANN
makes it difficult to determine how a particular decision was reached. Domain experts may
be sceptic about the decision reached. If the network produced an interesting discovery, it
would be beneficial if this was made explicit. Rule extraction from the ANN attach symbolic
meaning to the learning process.

The rule extraction algorithm considers the sum of the weighted inputs to each hidden and
output unit. It forms rules by taking the combination of inputs that exceed a threshold as
the antecedents and the hidden/output unit as the consequence. The final rule set consists of
a combination of these rules which have been reduced using propositional logic and applying
sensitivity analysis. See [Viktor et al, 1995] for a detailed discussion of our algorithm.

3 Framework

The combination of computation intelligent programs are problem dependant. Therefore,
the aims of the proposed framework are to be versatile and dynamically changeable. The
framework consists of the following general layers, as depicted in figure 1:

Saicsit ‘96 91

symbolic
to
numeric

symbolic
to
symbolic

scaling

L1: Data
Transformer

Initial Data Set L2: Computational L3: Fusion

Intelligent Prgms

L4: Knowledge
Representation

Figure 1: A framework for executing multiple computational intelligent programs

3.1 Data set translation, insertion and selection layer

The first task of this layer is to translate the initial data set to an equivalent representation
without any loss of information. The input data representation of the four component pro-
grams vary considerably. This layer includes programs to convert data to CN2, BEXA, C4.5
and ANN format. For an ANN, the symbolic data are translated to a numeric representation
by the use a scaling algorithm.

Secondly, the selection of the various training data sets for insertion into the computational
intelligent programs is addressed. The data set may be partitioned into non-overlapping sets,
fully replicated or partially replicated as needed. Again, this selection process is problem
dependent. Usually, if the data set is small, wide and the level of noise is high then the data
are fully replicated. For example, a noisy tuberculosis data set consisting of 344 rows and
containing 144 inputs yielded the best results when fully replicated [Viktor & Cloete, 1996).

3.2 Individual Computational Intelligent Programs

This layer may consist of a number of sublayers, where the outputs of layer 1 act as input to
layer i+ 1. Each of the individual computational intelligent programs executes autonomously.
In addition, the programs have the ability to obtain and use the results of the other programs.
The number and type of individual computational intelligent programs are problem dependent.
More than one program of a specific type may be executed in parallel. For example, a variety
of ANNs, each using a different training function, can be utilised.

92 Saicsit ‘96

3.3 Fusion layer

The fusion layer consists of methods which interpret and combine the results obtained in
the previous layer. It also contains procedures to test the accuracy and comprehensibility
of the knowledge discovered by the individual components of layer 2. The fusion process is
dependant on the fragmentation of the training set. If the training set has been partitioned,
the fusion set usually combines the results of layer 2. Replication of data usually require
that some selection process is performed. Criteria such as the accuracy of individual rules,
the number of examples covered and the comprehensibility of the rules are used to yield an
optimum rule set.

3.4 Discovered knowledge

The final layer contains a set of rules which represents the knowledge discovered by the
framework. Additional information, including the overall rule set accuracy, rule and attribute
relevance, individual rule accuracy and coverage, rule set size and average number of attributes
used, is also provided.

4 Conclusion

The ability of a computational intelligent program to find the best solution to a given problem
is partially determined by the data set representation. A number of factors, including training-
set size and the ability of the program to discover interesting relationships, can mediate the
effect of the data representation on the accuracy of the learned concept descriptions. By
constructing a framework which takes advantage of each component programs’ strengths and
data representation, the effect of the data set representation may be further minimised.

Current research includes the experimental evaluation and refinement of our framework. Some
of the results which we obtained by considering a tuberculosis data set are discussed in
[Viktor & Cloete, 1996]. The development of a framework for executing computational intelli-
gent programs is a promising approach to machine learning. Since it combines the strengths of
various computational intelligent programs, it has the potential to address real-world problems
which could not previously be solved by single methods.

References

[Clark, 1989] P Clark and T Niblett, 1989. The CN2 Induction Algorithm. Machine Learning,
3.

[Cloete & Viktor, 1996] I Cloete and HL Viktor, 1996. Inserting Domain Knowledge into Ar-
tificial Neural Networks, Technical Report ANN/RI/01/96, Department of Computer
Science, University of Stellenbosch, Stellenbosch, South Africa.

[Fu, 1994] LM Fu, 1994. Neural Networks in Computational Intelligence, McGraw-Hill.

[Matheus et al, 1993] Matheus CJ, Chan PK & Piatetsky-Shapiro G. 1993. Systems for
Knowledge Discovery in Databases. IEEE Transactions on Knowledge Data Engi-
neering, 5(6), p904-913.

Saicsit ‘96 ' 93

[Quinlan, 1994] JR Quinlan, 1994. C4.5: Programs for Machine Learning, Morgan Kaufmann.

[Towell & Shavlik, 1994] GG Towell and JW Shavlik, 1994. Refining Symbolic Knowledge
using Neural Networks, Machine Learning, (editors RS Michalski and G Tecuci), 4,
Morgan Kaufmann.

[Theron & Cloete, 1996] H Theron and I Cloete, 1996. BEXA: A Covering Algorithm for
learning Propositional Concept Descriptions, Machine Learning, 14, p321-331.

[Viktor et al, 1995] HL Viktor, AP Engelbrecht and I Cloete, 1995. Reduction of Symbolic
Rules from Artificial Neural Networks using Sensitivity Analysis, IEEE ICNN’95,
Perth, Australia.

[Viktor & Cloete, 1996] HL Viktor and I Cloete. 1996. Extracting Knowledge from Tubercu-
losis Data, to appear in Methods for Informatics in Medicine.

94 Saicsit ‘96

A Script-based prototype for Dynamic Deadlock Avoidance

C N Blewett" and G J Erwin*
* Dept. of Accounting and Finance (Business Information Systems Section), University of Natal, King George
V Ave., Durban 4001, South Africa, BLEWETT@BIS.UND.AC.ZA
Dept. of Accountancy (Business Information Systems Section), University of Durban-Westville, Private Bag

X54001, Durban 4000, South Africa, ERWIN@IS.UDW.AC.ZA
Abstract

Expert systems apply Artificial Intelligence (AI) techniques to an application area, aiming (usually) to mimic the
behaviour of a human expert. However, there are some Al techniques which can be used to improve the internal
performance of an existing application, not necessarily currently performed by a human. In this paper, we present further
research and results of EAGLE (External Advisor for Granting Locks Expertly), an expert system advisor for the lock
manager in a database system. By matching lock event sequences received from the lock manager against stored scripted
deadlock sequences, EAGLE is able to identify unfolding deadlock sequences. By using this Dynamic Deadlock
Avoidance (DDA) approach, EAGLE is able to avoid deadlocks before they occur. Currently, no ideal solution exists
to the deadlock problem. Solutions vary in terms of the number of waits for access to resources and the number of
deadlock occurrences. By utilising Al techniques, DDA offers a new way of treating the deadlock problem. In this paper
we describe the design of EAGLE and present the results, in terms of the number of waits and number of deadlock
occurrences, occurring with DDA compared with Deadlock Detection and Resolution.

Keywords

database system, deadlock, expert system, scripts, knowledge representation, machine learning, plan recognition

1. Introduction

“Deadlock is a situation in a resource allocation system in which two or more processes are in a simultaneous wait state,
each one waiting for one of the others to release a resource before it can proceed.” Deadlock may occur within database,
communication and distributed systems using locking as a concurrency control strategy [3]. The deadlock state and its
treatment are well-described. See, for example, [1], [5], [7], [10], [12] and [22].

Blewett and Erwin [6] describe four categories of deadlock treatment: viz. ignore deadlock, deadlock detection and
resolution, deadlock prevention and deadlock avoidance.

Detection with recovery allows the system to enter a deadlock state and then recover from it. Prevention ensures that
a deadlock will never happen. Avoidance should also ensure no deadlocks, but, can only do that by using a priori data
about the locking activities of transactions (resource consumers) [3]..

The dynamic deadlock avoidance (DDA) approach described in this paper does ot require pre-stored knowledge of
lock request sequences, but attempts to notice potential deadlocks based on experience accumulated from observations
of the previous locking event sequences which led to deadlock. DDA allows deadlock to occur, records the conditions
which led to the deadlock, then watches for similar, deadlock-producing conditions in future.

DDA treats the deadlock problem as a plan recognition issue [4], rather than as a problem resolution issue. The DDA
approach attempts to identify whether the "goal" of the running "plan” of current locking event sequences is deadlock.
When this goal is recognised, DDA OBJECTS to further locking activities which could lead to a future deadlock.

In the following sections we first describe the overall design of our DDA-based prototype, called EAGLE (External
Advisor for Granting Locks Expertly), incorporating script-based knowledge representation [18], [19] and [20], in a
centralised resource allocation (database) system. We then discuss the implementation of the EAGLE prototype,
EAGLE’s components, and test runs under simulated conditions within a database system. We describe the sets of test
data used to assess the impact of EAGLE on the occurrence of deadlock under those simulated conditions and present
some preliminary results from those test runs.

Saicsit ‘96 95

