The South African Institute of Computer Scientists
and
Information Technologists

The 1996 National
Research and

Development

Conference

Interaction Conference Centre,
University of Natal, Durban

26 & 27 September

Hosted by

The Department of Computer Science and informationSystems
University of Natal, Pietermaritzburg

Sponsored by PROCEEDINGS

(3] NN S S S
R RN -
- L LB A ]
== [T 55
N EERERSREN o
L

Edited by Vevek Ram




The South African Institute of Computer Scientists
and
Information Technologists

Proceedings

of the

1996 National Research and
Development Conference

Industry meets Academia

Interaction Conference Centre, University of Natal,
Durban .
26 & 27 September

Edited by
Vevek Ram




©1996 Copyrights reside with the original authors who may be contacted directly
ISBN 0-620-20568-7

Cove{ printed by Natal Printers (Pty) Ltd, Pietermaritzburg
Cgpy_mg by t1.16 Multwopy Centre, University of Natal, Pietermaritzburg
Binding by Library Technical Services, University of Natal, Pietermaritzburg

The views expressed in this book are those of the individual authors

FOREWORD

This book is a collection of papers presented at the National Research and Development Conference
of the Institute of Computer Scientists and Information Technologists, held on 26 & 27 September,
at the Interaction Conference Centre, University of Natal, Durban. The Conference was organised by
the Department of Computer Science and Information Systems of The University of Natal,
Pietermaritzburg.

The papers contained herein range from serious technical research to work-in-progress reports of
current research to industry and commercial practice and experience. It has been a difficult task
maintaining an adequate and representative spread of interests and a high standard of scholarship at
the same time. Nevertheless, the conference boasts a wide range of high quality papers. The program
committee decided not only to accept papers that are publishable in their present form, but also papers
which reflect this potential in order to encourage young researchers and to involve practitioners from
commerce and industry.

The organisers would like to thank IBM South Africa for their generous sponsorship and all the
members of the organising and program committees, and the referees for making the conference a
success. The organisers are indebted to the Computer Society of South Africa (Natal Chapter) for
promoting the conference among its members and also to the staff and management of the Interaction
Conference Centre for their contribution to the success of the conference.

On behalf of the Organising Committee
Vevek Ram

Editor and Program Chair
Pietermaritzburg, September 1996




Organising Committee

Conference General Chairs
Mr Rob Dempster and Prof Peter Warren (UNP)

Organising Chair
Dr Don Petkov (UNP)

Secretariat
Mrs Jenny Wilson

Program Chair
Prof Vevek Ram (UNP)

Program Committee

Prof Peter Wentworth, Rhodes

Dr Milan Hajek, UDW

Prof Derek Smith, UCT

Prof Anthony Krzesinski, Stellenbosch
Dr Don Petkov, UNP

Mr Rob Dempster, UNP

Prof Peter Warren, UNP

ii

Table of Contents

Foreword

Organising Committee
List of Contributors
Keynote Speaker

The Role of Formalism in Engineering Interactive Systems
M D Harrison and D J Duke

Plenary

Industry-Academic-Government Cooperation to boost Technological Innovation
and People Development in South Africa

Tjaart J Van Der Walt

Checklist support for ISO 9001 audits of Software Quality Management Systems
A J Walker

The IS Workers, they are a-changin'
Derek Smith

Research

Examination Timetabling
E Parkinson and P R Warren

Generating Compilers from Formal Semantics
H Venter

Efficient State-exploration
J. Geldenhuys

A Validation Model of the VMTP Transport Level Protocol
H.N. Roux and P.J.A. de Villiers

Imtelligent Systems

Automated Network Management using Artificial Intelligence
M Watzenboeck

A framework for executing multiple computational intelligent programs

using a computational network
H L Viktor and I Cloete

A Script-Based prototype for Dynamic Deadlock Avoidance
C N Blewett and G J Erwin

Parallelism: an effective Genetic Programming implementation
on low-powered Mathematica workstations

H. Suleman and M. Hajek

Feature Extraction Preprocessors in Neural Networks for Image Recognition
D Moodley and V Ram

iii

ii
vi

15

17

29

35

43

63

75

87

89

95

107

113




Real-Time Systems

The real-time control system model - an Holistic Approach to System Design
T Considine

Neural networks for process parameter identification and assisted controller

tuning for control loops
M McLeod and VB Bajic

Reference Model for the Process Control Domain of Application
N Dhevcharran, A L Steenkamp and V Ram

Database Systems

The Pearl Algorithm as a method to extract infomation out of a database
J W Kruger

Theory meets Practice: Using Smith's Normalization in Complex Systems
A van der Merwe and W Labuschagne

A Comparison on Transaction Management Schemes in Multidatabase Systems
K Renaud and P Kotze

Education

Computer-based applications for engineering education
A C Hansen and P W L Lyne

Software Engineering Development Methodologies applied to
Computer-Aided Instruction
R de Villiers and P Kotze

COBIE: A Cobol Integrated Environment
N Pillay

The Design and Usage of a new Southern African Information Systems Textbook
G JErwin and C N Blewett

Teaching a first course in Compilers with a simple Compiler Construction Toolkit
G Ganchev

Teaching Turing Machines: Luxury or Necessity?
Y Velinov

Practice and Experience

Lessons learnt from using C++ and the Object Oriented Approach to

Software Development
R Mazhindu-Shumba

Parallel hierarchical algorithm for identification of large-scale industrial systems
B Jankovic and VB Bajic

iv

119

127

137

145

151

159

171

179

187

195

211

219

227

235

Information Technology and Organizational Issues

A cultural perspective on IT/End user relationships
A C Leonard

Information Security Management: The Second Generation
R Von Solms

Project Management in Practice
M le Roux

A Case-Study of Internet Publishing
A Morris

The Role of IT in Business Process Reengineering
C Blewett, J Cansfield and L Gibson

Abstracts

On Total Systems Intervention as a Systemic Framework for the Organisation
of the Model Base of a Decision Support Systems Generator

D Petkov and O Petkova

Modular Neural Networks Subroutines for Knowledge Fxtraction
A Vahed and I Cloete

Low-Cost Medical Records System: A Model
O A Daini and T Seipone

A Methodology for Integrating Legacy Systems with the Client/Server Environment
M Redelinghuys and A L Steenkamp

Information Systems Outsourcing and Organisational Structure
M Hart and Kvavatzandis

The relational organisation model
B Laauwen

The Practical Application of a New Class of Non-Linear Smoothers for
Digital Image Processing
E Cloete

A Technology Reference Model for Client/Server Software Development
R C Nienaber '

The Feasibility Problem in the Simplex Algorithm
T G Scott, J M Hattingh and T Steyn

Author Index

243

257

267

271

285

299

300

301

302

303

304

305

306

307

309




Vladimir B Bajic

Centre for Engineering Research,
Technikon Natal,

P O Box 953

Durban 4000

C N Blewett

Department of Accounting
University of Natal

King George V Avenue
Durban 4001

Justin Cansfield
Department of Accounting
University of Natal

King George V Avenue
Durban 4001

Tom Considine

Apron Services (Pty) Ltd
P O Johannesburg
International Airport
1600

Eric Cloete

School of Electrical Engineering
Cape Technikon

Box 652

Cape Town

I Cloete

Computer Science Department
University of Stellenbosch
Stellenbosch

7600

O A Daini

Department of Computer Science
University of Botswana
Gaborone

Botswana

Nirvani Devcharan
Umgeni Water

Box 9
Pietermaritzburg
3200

P J A de Villiers

Department of Computer Science
University of Stellenbosch
Stellenbosch

7700

List of Contributors

vi

Ruth de Villiers

Department of Computer Science and
Information Systems

UNISA

Box 392, Pretoria, 0001

G J Erwin

Business Information Systems
University of Durban-Westville
Private Bag X54001

Durban 4000

G Ganchev

Computer Science Department
University of Botswana

PBag 0022

Gaberone, Botswana

J Geldenhuys

Department of Computer Science
University of Stellenbosch
Stellenbosch

7700

Louise Gibson

BIS, Dept Accounting & Finance
University of Durban

Pvt Bag X10

Dalbridge 4014

Mike Hart

Department of Information Systems
University of Cape Town
Rondebosch

7700

M. Hajek

Department of Computer Science
University of Durban-Westville
Pvt Bag X54001

Durban 4000

A C Hansen

Dept of Agricultural Engineering
University of Natal

Private Bag X01

Scottsville 3209

J M Hattingh

Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

Boris Jankovic

Centre for Engineering Research
Technikon Natal

P O Box 953,

Durban 4000

Paula Kotze

Department of Computer Science and
Information Systems

UNISA

Box 392

Pretoria, 0001

J W Kruger
Vista University
Soweto Campus
Box 359
Westhoven 2124

A C Leonard

Dept of Informatics
University of Pretoria
Pretoria

2000

Ben Laauwen

Laauwen and Associates
P O Box 13773
Sinoville

0129

Mari Le Roux

Information technology, development: project
leader

Telkom IT 1015

Box 2753

Pretoria 0001

P WL Lyne

Dept of Agricultural Engineering
University of Natal

Private Bag X01

Scottsville 3209

Rose Mazhindu-Shumba
Computer Science Department
University of Zimbabwe

Box MP167

Harare, Zimbabwe

vii

Meredith McLeod

Centre for Engineering Research,
Technikon Natal,

P O Box 953

Durban 4000

D Moodley

Computer Management Systems
Box 451

Umhlanga Rocks

4320

Andrew Morris
P O Box 34200
Rhodes Gift
7707

R C Nienaber

Technikon Pretoria

Dept of Information Technology
Private Bag X680

Pretoria 0001

E Parkinson

Department of Computer Science
University of Port Elizabeth

Box 1600

Port Elizabeth 6000

Don Petkov

Department of Computer Science and
Information Systems

University of Natal

PBag x01

Scottsville 3209

Olga Petkov
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg

N Pillay
Technikon Natal
Box 11078
Dorpspruit 3206
Pietermaritzburg




V Ram

Department of Computer Science and
Information Systems

University of Natal

PBag x01

Scottsville 3209

Melinda Redelinghuys

Department of Computer Science and
Information Systems

UNISA

Box 392

Pretoria, 0001

Karen Renaud

Computer Science and Information Systems
UNISA

Box 392

Pretoria, 0001

H N Roux

Department of Computer Science
University of Stellenbosch
Stellenbosch

7700

T G Scott
Department of Computer Science
Potchefstroom University for CHE
Potchefstroom

2520

T Seipone

Department of Computer Science
University of Botswana
Gaborone

Botswana

Derek Smith

Department of Information Systems
University of Cape Town
Rondebosch

7700

Anette L Steenkamp

Department of Computer Science and
Information Systems

UNISA

Box 392

Pretoria, 0001

T Steyn

Department of Computer Science
Potchefstroom University for CHE
Potchefstroom 2520

viii

H. Suleman

Department of Computer Science
University of Durban-Westville
Pvt Bag X54001

Durban 4000

A Vahed

Department of Computer Science
University of Western Cape
Private Bag X17

Bellville 7530

A Van der Merwe

Computer science and Informations Systems
UNISA

P O Box 392

Pretoria, 0001

Tjaart J Van Der Walt

Foundation for Research and Development
Box 2600

Pretoria, 0001

K Vavatzandis

Department of Information Systems
University of Cape Town
Rondebosch

7700

Y Velinov

Dept Computer Science
University of Natal
Private Bag X01
Scottsville 3209

_H Venter

Department of Computer Science
University of Port Elizabeth

Box 1600

Port Elizabeth 6000

H L Viktor

Computer Science Department
University of Stellenbosch
Stellenbosch

7600

R Von Solms

Department of Information Technology
Port Elizabeth Technikon

Private Bag X6011

Port Elizabeth 6000

A J Walker

Software Engineering Applications
Laboratory

Electrical Engineering

University of Witwatersrand
Johannesburg

P Warren

Computer Science Department
University of Natal

P/Bag X01

Scottsville 3209

Max Watzenboeck
University of Botswana
Private Bag 0022
Gaberone

Botswana




THE ROLE OF FORMALISM IN ENGINEERING INTERACTIVE SYSTEMS

M.D. Harrison and D.J. Duke
Department of Computer Science
University of York
Heslington, York, YO1 5DD, UK.

Abstract

This paper is concerned with the role of formal notations and methods in engineering interactive systems.
It begins by briefly reviewing the role of formal methods in Human Computer Interaction. The objective
of capturing requirements for interactive systems, particularly those requirements that are concerned with
folding a user orientated perspective into the design, is then discussed. An object oriented specification
technique is introduced to emphasise human interaction with the system and to provide a first step towards
specifying user requirements. The paper concludes by discussing the use of this approach to support design
refinement and to check that specifications satisfy interaction requirements.

Introduction

Formalism is commonplace in Human Computer Interaction.

o Domain modellers or task analysts use it to describe the work system in which a computer based
artifact, or network of artifacts, resides. Here the purpose of the notation is precise description of
work objectives, procedures for achieving these objectives, and general organizational and commu-
nication characteristics associated with the system. The role of the formalism is to aid the capture of
the important concepts succinctly. The formalism also plays a role in checking consistency and ac-
cessibility of knowledge structures, see for example the TAKD notation (Diaper, 1989), or the TAG
notation (Green et al., 1988). The task structure incorporating plans of how tasks should be carried
out, may also be linked to a system model. For example Baber and Stanton use a state-transition dia-
gram (Baber and Stanton, 1994)) in order to assess potential failures, and their impact, that might
occur in execution of these plans.

e Cognitive modellers use formalism to assess what cognitive resources are required to understand and
use the system. Here the formalism is required to provide conceptual clarity as well as to represent
scenarios for simulation. Task Action Grammar was designed to capture the competence of a user
(Green et al., 1988)). From another angle, Young and his colleagues use formalism to describe the
domain and device characteristics of a system prior to using a planning system (the SOAR system)
which simulates some aspects of cognition, to emulate what the planner would do to achieve certain
objectives, and to compare a designer’s idealised description of the behaviour of the system with
what the simulator in fact produces (Young and Whittington, 1990).

e Specifiers or modellers of dialogue use a formal notation to describe the dialogue and to create
the characteristic (“look and feel”) of a particular application. Here the role of the formalism is
to provide a basis for interpretation of the dialogue description which can be prototyped accurately
and quickly (Green, 1987).

e Software (or more generally systems ) engineers use formalism to describe the characteristics of an
interactive system in order to facilitate its accurate construction and maintenance. Here there are a
number of roles for the formalism, and it is these roles that will form the basis for this paper.

The advantage of a formal notation is that it is associated with a clearly defined meaning, often expressed
mathematically, and may also be connected with rules for proving properties (about timing or consistency
for example) of expressions of the language. The theme of this paper is the role of formal notations in
engineering interactive systems. Here we ate particularly concerned with the use of formal notations to
represent interactive systems and what propetties may be conveniently represented within them. There

Saicsit ‘96 1




are two reasons for representing interactive systems. The first is to provide a means of analyzing an ex-
isting system so that it becomes possible to check it for properties such as completeness or consistency.
The second is to provide a representation that supports the conceptualization and refinement of interactive
systems. Preoccupation with the analysis of specifications leads to an emphasis on design techniques that
are rigorous rather than exploratory.

To support the special requirements of interactive systems, extensions and styles of specification have been
specially developed. In particular any specification technique must take account at some level of the whole
system: human, software and hardware. Formal notations are required that can express an “‘interactive
view” of many agents to an interactive system, as we are interested in expressing user requirements of
specifications as well as refining and checking specifications.

In the next section we identify briefly the role of formal notations in software engineering. We then discuss
HCI specification and the role of formal notations in expressing interactive systems. In this context the
problem of folding user or task issues as requirements into specifications will be articulated. We introduce
a number of properties that we might want to prove true of interactive systems.

In the following section we present a specification structuring notion, that of interactor, that can be used to
capture essential characteristics of interactive systems and use it to specify a simple system employing a
hybrid of two existing systems engineering notations. Issues concerned with the refinement of formal spe-
cification of interactive systems are then introduced, discussing in particular the relationship of top-down
and bottom-up techniques and refinement. We also discuss mechanisms for producing prototypes from
specifications. Finally, work in progress demonstrating the validity of properties of interactive systems is
presented.

Engineering Interactive Systems

The argument for the use of formal notations in the engineering of interactive systems is that informal
techniques often lack precision, and this can lead to ambiguity, and therefore to systems that fail to meet
requirements. This failure can be expensive to deal with downstream during the implementation and val-

‘idation phases of the design and implementation lifecycle. The use of formal notations in some safety crit-

ical systems has been justified on this basis (Hall, 1990) despite reasonable concerns about relative cost of
the specification phase. Formal notations are regarded (possibly mistakenly, according to (Hall, 1990)) as
difficult to understand and are often used in an obscure style. In the main, however, where these notations
are used in practice, their practical role has been to assist the designer and implementer in understanding
the system. ‘

It is also recognized that two further goals may be achievable if formal notations are used. The first possib-
ility is that system specification may be progressively transformed, preserving correctness, into an execut-
able program. Refinement rules and properties are difficult to apply and prove. Their use and application
could be much improved through the development of appropriate formal methods and the use of software
tools that are currently unavailable. The second goal is that properties or requirements of a specification
may be proved to be discharged by the program. It is clear that though both goals are desirable, extensive
automatic tool support would be required to make them feasible.

A variety of formal approaches are being developed. There are a number of distinctions (see also (Gaudel,
1994; Vissers et al., 1991)) that can be made between them:

1. between model based specifications, in which established theories are incorporated, and algebraic
specifications which permit the introduction of new theories;

2. where there is good support for conceptualization versus an adequate proof theory (supporting veri-
fication);

3. where the specification describes the internal behaviour such as state of the system versus where the
specification describes external behaviour such as communication between processes;

2 Saicsit ‘96

4. whether the specification notation is textual or diagrammatic as is the case with approaches such as
statecharts (Harel, 1987) or Petri nets (Palanque and Bastide, 1994).

The means of breaking the specification down into components in order to support abstraction and mod-
ularization in large scale specifications is also a key and somewhat neglected aspect of their design. The
formal specification notation to be described in this paper, uses an object structure with the aim of deal-
ing with problems of scale and providing a structure that corresponds to the way in which a presentation
(display for example) is constructed.

Folding the user into the system
Role of formalism

The problem of Human Computer Interaction is to take the view of the user or user team in relation to the
design of a computer system, in order to make the system more “natural”, “usable”, “human-error toler-
ant” etc. The concern of much applied psychology within HCI has been the individual behaviour of human
users of computer systems, producing methods for experimenting with systems and theories for address-
ing the needs and resources of these users. More recently this study has been broadened, recognizing the
limitations of a simple individual cognitive view, and incorporating a broader understanding of external
considerations (Suchman, 1987; Hutchins, 1994; Nardi, 1996). Ethnography, organizational psychology
and other organisational theories have had a role here. The difficulty with much of this work is that the
connection between insights into human behaviour and the design of computer systems is difficult to forge.
Much of the work that is done is at the level of post-hoc “holistic”” evaluation. The problem we are con-
cerned with is how this user view of a computer system may be incorporated into the representation of the
system.

As has already been noted in the Introduction, there are a variety of formalisms available for describing
aspects of the HCI problem. In many cases, the primary purpose of the formalism is to act as a check for
the cognitive modeller or work modeller. Hence Task Action Grammar (Payne and Green, 1986) is used to

' represent the competence of a user and can be used by the psychologist to analyze informally the consist-

ency of the interface. A task analysis notation such as TKS (Johnson et al., 1988) may be used to express
what is required in order to perform the set of tasks of the system. Notations also play an implementational
role. So for example Young and Blandford’s (Blandford and Young, 1993) Instruction Language is used
to help the cognitive modeller conceptualize the problem but is also the representation that will be used
by the SOAR system in simulation.This paper is concerned with software engineering notations with an
emphasis on their ability to provide the possibility of more automatic checking of the artifact and thereby
to assist the design process.

The role of formal specification is to make precise the behaviour of an artifact so that an implementer may
construct a system appropriately. In the case of specification, where details of the state of the system and
operations on the state of the system are expressed explicitly (as an abstract data type, for example), em-
phasis is on the ability to demonstrate that refinement to implementation preserves the requirements of the
specification. However, it is also concerned with properties of specifications including general properties
of consistency and completeness, as well as more specific properties of a particular specification. In the
case of specifications where the concern is with external behaviour, the purpose of the specification is to
show that certain properties are true of the system, for example it is deadlock free.

It will be necessary to structure a specification so that those perceivable aspects of the state (display, for
example) may be reasoned about as well as those actions that the user carries out in order to invoke the
functionality of the system. In practice, existing methods of specification are adequate for the purpose of
reasoning. We shall adopt a particular approach to illustrate the technique. This approach is based on a
structuring mechanism (interactor) which makes interactive behaviour explicit at an object level without
compromising the use of existing and well-founded formal specification techniques.

Saicsit ‘96 ' | 3




Interaction Requirements

Given a specification of an interactive system, requirements may be expressed that concern the resources
and capacities of the user. We list some typical generic requirements.

e Information presented by the system should be relevant to the performance of the tasks that the sys-
tem is designed to support.

e Immediately relevant commands should be directly accessible in the current mode.

e It should be possible to recover to a previous state when a mistake is made.

System support for the prevention of slips of action may be achieved by ensuring that the effects of actions
are visible to the operator of the system. As shall be seen, the mechanism of interactors is designed to
support this requirement by providing a structure that will encourage systems designers to ensure that the
internal operations of the system are made visible to the operator. In practice the visibility of actions is
often related to the context of the task that is being carried out. Mistakes may be protected against by
providing a clearly visible model of how the system works.

Actions that are taking place in the system should be clearly visible in the “rendering” of the system. This
idea is made explicit in notions of:

e visibility that requires that attributes of the state are perceivable in the presentation;

e predictability (Harrison, 1992), that takes into account the fact that the state of the system may affect
the consequence of operations without the operator being aware of the state that has these effects.

A system may be more tolerant to mistakes if it is consistent. Consistencyis a system property that supports
appropriate model generalization and thus reduces the likelihood of error. It is a notion that should be used
«carefully because inappropriate or partial consistencies may have the effect of leading to inappropriate
generalization (see (Grudin, 1989)).

Mechanisms for incorporating requirements

The problem is to develop a model of the system that will make it possible to demonstrate that user require-
ments are satisfied. At one level, the concern is to express the interactive behaviour of the system in more
detail than is the convention within the formal specification of systems, see for example (Bowen, 1992). It
is also necessary to capture properties in the specification that may only have significance in understand-
ing how the system is perceived. Hence, in the notion of interactor introduced next, a rendering defines
those elements of the state that are perceivable (perhaps audible), and a theory of presentations (Duke and
Harrison, 1994) defines specific characteristics of perception of different modalities, for example the way
those modalities are “chunked””.

Further, we might wish to take into account other external aspects of a system. For example, we may wish
to define those aspects of the system that are relevant in the performance of particular tasks. For example,
Roast (Roast, 1993) describes a notion of template to capture those aspects of the display and state of a
system that are relevant to a particular task.

Interactors

The question we consider now is how formal specification notations may be used to describe interactive
behaviour appropriately. Interactors provide a means of bridging between the requirements of the user and
the specification of interactive system that is used for implementation. The usability or human error prop-
erties, considered above, become more specific and can be expressed in terms of particular applications.

4 Saicsit ‘96

The term interactor has also been used to describe a class of low level generic objects that are instanti-
ated to an implementation (Myers, 1990) (here the term widger is sometimes used). Hence an interaction
object might include a generic menu widget for example that is instantiated to the particular menu when
constructing the system. The notion of interaction object represents a useful structure for thinking and
reasoning about the behaviour of interactive systems in general.

A number of other approaches have been taken to specifying interactor like objects (see for example (Fa-
conti and Paternd, 1990)). We use a hybrid style of specification, linking state information and behavioural
information. The two models each emphasizes different aspects of interaction, and the formalisms used
to express the models afford different approaches to the construction and analysis of specifications.

Specifying Interactors

This interactor model is developed in order to express useful properties of interactive behaviour (Dix et al.,
1987). The model (Duke and Harrison, 1993) is based on states, commands, events and renderings. These
ideas have been used to expose the properties expressed above as predictability and visibility. It is also
based on the structuring of model based specification around object oriented concepts, in particular the
Object Z notion of Duke and others (Duke and Duke, 1994). In outline, an interactor consists of an internal

=]

events state

rho

Figure 1: The Interactor.

state which is reflected through a rendering relation onto some perceivable representation. The interface
between an interactor and its environment consists of a set of events. There are two kinds of events: stimuli
are caused by agents within the environment and bring about state changes, while responses are events
generated by the interactor.

— interactor [press-button]
attributes
enabled B
actions
press

axioms
1. enabled = X = [press|enabled = X

The state of an interactor is modelled by a set of typed attributes (variables) such as ‘selected’. In the ex-
ample, this variable takes on a boolean value (true or false) to represent when the button has been selected
by the user. This property of a button (that is, whether it is currently selected or not) can be perceived
visually, hence the the boxed vis annotation. Such perceivable variables are called percepts, and make up
the presentation component of the interactor. One action, press, is available in the interface of the inter-
actor. Its effect is to toggle the button between being enabled or not enabled. This behaviour is described
precisely by axiom 1, which uses a modal predicdte that reads: if the value of the variable ‘enabled’ is
given by X, then in the state that arises after the action ‘press’ has been performed, the value of ‘enabled’
will be the negation of X. In general, predicates of the form P = [A]Q mean that in any situation where
‘P’ is true, performing the action ‘A’ will bring about a situation where ‘Q’ is true.

The button-press interactor can be inherited by othér system components that might respond to the ‘en-
abled’ state in application-specific ways. In this approach different copies of an inherited interactor can

Saicsit ‘96 5




