

Language identification for South African Bantu Languages using Rank Order Statistics

Meluleki Dube and Hussein Suleman Digital Libraries Lab, Department of Computer Science, School of IT University of Cape Town 6 November 2019

Language Identification

What is the language of a segment of text?

Significant for:

- Machine translation
- Natural language processing
- Information retrieval

Essentially a classification problem.

given text T => predict language L

South African Languages

• Ningizimu Afrika - Siswati

- Suid-Afrika Afrikaans
- iSewula Afrika IsiNdebele
- uMzantsi Afrika IsiXhosa
- iNingizimu Afrika IsiZulu
- Afrika-Borwa Sepedi
- South Africa English
- Aforikaborwa Setswana
- Afrika Tshipembe Tshivenda
- Afrika-Dzonga Xitsonga
- Aforika Borwa Sesotho

How do you say SOUTH AFRICA in South African?

#ShareYourHeritage

Mixed text.

- e.g., Text is not written in *slegs een taal* (a single language).
- Low-resource languages have few NLP algorithms and corpora.
 - e.g., Bantu languages
- Short texts.
 - e.g., Tweets, social media posts

Related Work

Naïve Bayesian Classifier [10]

Language models [4]

Support Vector Machines [1]

NB and SVM yield 99.4% can accuracy with 100 characters of test data.

Rank Order Statistics

Proposed by Cavnar and Trenkle [2] as a counting technique instead of a network model.

Algorithm:

- Separately count n-grams in training and test data.
- Sort both lists in order, and discard n-grams after rank M.
- Similarity = ∑(differences in rank) over n-grams.
 Where n-gram is only in one list, difference=M

Rank Order Statistics Example

Trigrams for the testing data	Trigrams for the training	Out of order number for the			
that is in isiNdebele arranged in	data (model for isiNdebele	model and the testing data			
the order of their frequencies	language) arranged in the	given by the absolute value of			
(highest to lowest)	order of their frequencies	the difference between rank			
	(highest to lowest)	in mode- rank in testing data			
nga	nga	0-0 =0			
la	oku	1-2 =1			
oku	la la	2-1 =1			
an	ela	Max			
ana	ana	4-4 =0			
enz	nam	5-6 =1			
ela	enz	6-3 =3			
		$\therefore distance = 0 + 1 + 1 + Max + 0$			
		+ 1 + 3			
		= 6 + Max			

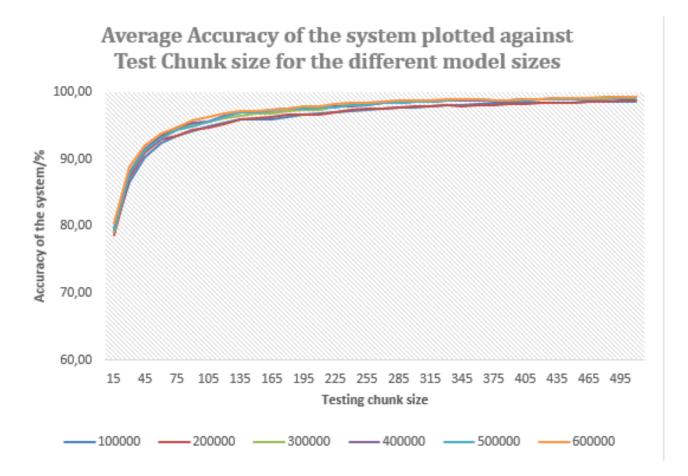
Our Goal

Ignore English and Afrikaans.

- Over-studied, and potentially biases results.
- Differentiate among other African languages.
 - So we can build an African language digital library with automatic language detection for submissions.
- Test how well this works with small texts and noisy training/test data.
 - Because social media is the new "sliced bread".

Use Rank Order Statistics.

- Easy to re-train/update/explain.
- □ Use M=300.
 - Only use the top 300 n-grams.
 - Initial tests showed little benefit in increasing this.
- Obtain test/training data from Sadilar project, which is building an archive of text corpora.



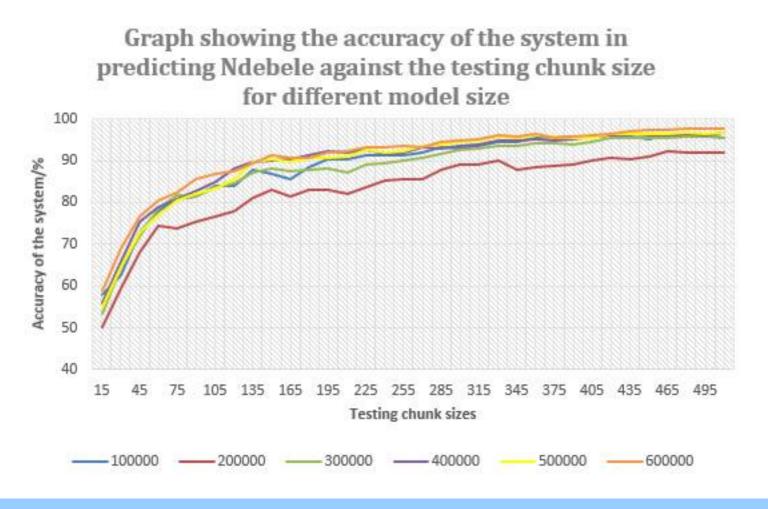
Experiments

- 10-fold cross-validation.
- Training data sizes from 100000-600000 characters, in 100000 increments.
- Test data sizes from 15-495 characters, in 30-character increments.

Results 1/3

Results 2/3

Actual


	Ndebele	Pedi	Sotho	Tswana	Swati	Tsonga	Venda	Xhosa	Zulu
Ndebele	519	1	1	3	16	10	5	98	247
Pedi	3	786	22	80	4	2	1	2	0
Sotho	9	7	783	90	5	0	2	2	2
Tswana	0	51	100	737	1	5	2	0	4
Swati	40	3	4	2	788	6	3	27	27
Tsonga	11	2	2	9	8	854	11	0	3
Venda	4	1	2	1	2	10	873	3	4
Xhosa	84	1	5	1	41	6	5	519	238
Zulu	105	1	2	1	63	2	3	156	567

Predicted

test=100000, training=15

Results 3/3

Conclusions

- 99.3% accuracy with 495 characters of test data and 600000 characters of training data.
- 78.72% accuracy with 15 characters of test data and 100000 characters of training data.
- This algorithm works sufficiently well to differentiate among African languages.
 - Even with noise and short texts, with substantial language similarity, and little training data.

that's all folks!

