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Language Identification

O What is the language of a segment of text?

O Significant for:
® Machine translation
® Natural language processing
® [nformation retrieval

O Essentially a classification problem.
B given text T => predict language L
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South African Languages

#ShareYourHeritage

* Ningizimu Afrika - Siswati
- Suid-Afrika - Afrikaans How do you say

» iSewula Afrika - IsiNdebele

« uMzantsi Afrika - IsiXhosa S O UT |—|

* INingizimu Afrika - IsiZulu

« Afrika-Borwa - Sepedi A |: R ‘ CA

- South Africa - English

- Aforikaborwa - Setswana N SOUth Afrfcan?
- Afrika Tshipembe - Tshivenda

 Afrika-Dzonga - Xitsonga

- Aforika Borwa - Sesotho
PLAY

Inspiring new ways
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Key Issues

O Mixed text.

m e.g., Text is not written in slegs een taal (a single
language).

O Low-resource languages have few NLP
algorithms and corpora.

m e.g., Bantu languages

O Short texts.
m e.g., Tweets, social media posts
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Related Work

O Naive Bayesian Classifier [10]
O Language models [4]

O Support Vector Machines [1]

® NB and SVM vyield 99.4% can accuracy with 100
characters of test data.
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Rank Order Statistics

O Proposed by Cavnar and Trenkle [2] as a
counting technique instead of a network
model.

O Algorithm:
m Separately count n-grams in training and test data.

®m Sort both lists in order, and discard n-grams after
rank M.

®m Similarity = > (differences in rank) over n-grams.
0 Where n-gram is only in one list, difference=M
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Rank Order Statistics Example

Trigrams for the testing data Trigrams for the training Out of order number for the
that is in isiNdebele arranged in data (model for isiNdebele maodel and the testing data

the order of their frequencies language) arranged in the given by the absolute value of
(highest to lowest) order of their frequencies the difference between rank
(highest to lowest) in mode- rank in testing data

nga nga |0-0[=0

la__ ~ oku |1-2]=1

oy | I 2-1]=1

an_ _ela Max

ORI —  ana [4-4/=0

enz < ram 15-6/=1

R 16-3/=3
| h sdistance =0+ 1+ 1+ Max+0

+14+3
=6+ Max
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Our Goal

O Ignore English and Afrikaans.
m Over-studied, and potentially biases results.

O Differentiate among other African languages.

m So we can build an African language digital library
with automatic language detection for submissions.

O Test how well this works with small texts and
noisy training/test data.

B Because social media is the new "sliced bread”.
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Approach

O Use Rank Order Statistics.
m Fasy to re-train/update/explain.

O Use M=300.

® Only use the top 300 n-grams.
® Tnitial tests showed little benefit in increasing this.

O Obtain test/training data from Sadilar project,
which is building an archive of text corpora.
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Experiments

O 10-fold cross-validation.

O Training data sizes from 100000-600000
characters, in 100000 increments.

O Test data sizes from 15-495 characters,
in 30-character increments.
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Results 1/3

Average Accuracy of the system plotted against
Test Chunk size for the different model sizes
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Results 2/3

Predicted
Ndebele Pedi Sotho Tswanma Swati  Tsonga Venda Xhosa Zulu
Ndebele 519 1 1 3 16 10 5 08 247
Pedi 3 786 22 80 - 2 1 2 0
Sotho 7 783 90 5 0 2 2 2
< Iswana 0 51 100 7137 1 5 2 0 -
% Swati 40 3 < 2 788 6 3 27 27
< Tsonga 11 2 2 9 8 854 11 0 3
Venda + 1 2 1 2 10 873 3 -
Xhosa 84 1 5 1 41 6 5 519 238
Zulu 105 1 2 1 63 2 3 156 567

test=100000, training=15
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Results 3/3

Graph showing the accuracy of the system in
predicting Ndebele against the testing chunk size
for different model size
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Conclusions

0 99.3% accuracy with 495 characters of test
data and 600000 characters of training data.

O 78.72% accuracy with 15 characters of test
data and 100000 characters of training data.

O This algorithm works sufficiently well to
differentiate among African languages.

® Fven with noise and short texts, with substantial
language similarity, and little training data.
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that's all folks!
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