
Introduction to
Programming

Hussein Suleman

Department of Computer Science

Arrays

Basic Operations

CSC1

Basic
Operations

Hussein Suleman

Department of Computer Science

University of Cape Town

Problem 1: Basic statistics program

4

Write a program to output the average (a), the median (x), and
the standard deviation (s), of a series of test values typed in by
the user.

▪ The median is the middle value in a list of values.

▪ The standard deviation is a measure of how spread-out the data is and
is calculated using this formula:

standard deviation: a quantity expressed by how much the members of a group differ from the

mean value for the group.

Problem 1: Basic statistics program

5

▪ We can calculate the average.
▪ arrays_problem1_soln.py

▪ … but we don’t yet have the tools for the median and standard
deviation. We need to be able to store and sort items in a list
somehow.

Concept: Arrays

6

An array is an indexed sequence of values associated with one
variable.

▪ Arrays can be fixed length or variable length.

▪ Arrays can hold multiple values of the same type or different
types.

5 3 2 4 7 1 3
0index

Array

values: 1 2 3 654

Python Arrays: Lists

7

▪ In Python, an array is called a list.

▪ To create a list:
▪ list1 = [] # empty list

▪ nums = [1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 15]

▪ # list of numbers

▪ animals = ['cat', 'dog', ’baboon', 'bison’]

▪ # list of strings

▪ stuff = [1, 2, 'hello']

▪ # mixed type list (yes we can do that)

Common Operations 1/5

8

Adding an item to a list

5 3 2 4X =

X.append (3)

5 3 2 4X = 3

Common Operations 2/5

9

Accessing an item in a list

5 3 2 4X =

print (X[1])

3

Common Operations 3/5

10

Accessing the last item in a list

5 3 2 4X =

print (X[-1])

4

Common Operations 4/5

11

Changing an item in a list

5 3 2 4X =

X[2] = 7

5 3 7 4X =

Common Operations 5/5

12

▪ Iterating over items in list – processing each item in the list
individually.

▪ When you do not need to know the indices:

for a in X:

print(a)

▪ When you do need to know the indices:

for n in range (len (X)):

print(n, X[n])

Example

13

This function finds the first occurrence of an item in a list. If the
item does not exist, the function returns -1.

def index (values, item):

for i in range (len(values)):

if values[i] == item:

return i

return -1

What values are

needed to test this

program using

different testing

strategies?

Exercise

14

▪ Write a program to take 5 strings as input from the user and
store them in an array. Then print them out in the same order
from the array.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Arrays

Using Array Operations

CSC1

Using Array
Operations

Hussein Suleman

Department of Computer Science

University of Cape Town

Common Pitfall/Error

19

Accessing an item that is not in the list!

▪ Python's response:
Traceback (most recent call last):

File "<string>", line 1, in <fragment>

builtins.IndexError: list index out of range

▪ Solution:
▪ Check the list length first and make sure the item exists!

Basic List Manipulation

20

Operation Syntax Example Example output

Merging lists
(concatenation)

<list1> + <list2> X = [1,2]
Y = [3,4]

[1,2,3,4]

Checking for item
(membership)

<item> in <list> X = [1, 2]
1 in X

True

Multiplying content of
lists (repetition)

<list> * <n> X = [1,2]
X * 2

[1,2,1,2]

Access list item
(indexing)

<list>[<index>] X = [1,2,3]
X[2]

3

Get length of list
(length)

len(<list>) X = [1,2,3,4]
len(X)

4

Delete item del <list>[<i>] X=[1,5,6,7]
del X[2]

X=[1,5,7]

Get slice of list
(slicing)

<list>[start:stop:step] X = [4,5,6,7]
X[1:3]

[5,6]

Iterate over list
(iteration)

for <var> in <list>: X = [2,4,6]
for a in X:

print (a+1)

3
5
7

Common List Functions

21

Function Syntax Example X

X = [1,3,5,4,2]

Add element to end <list>.append(<item>) X.append(6) X=[1,3,5,4,2,6]

Sort list <list>.sort() X.sort() X=[1,2,3,4,5,6]

Reverse items <list>.reverse() X.reverse() X=[6,5,4,3,2,1]

Find position of item <list>.index(<item>) Y = X.index(4) Y=2

Insert item into list <list>.insert(<i>,<item>) X.insert(2,2) X=[6,5,2,4,3,2,1]

Count occurrences
of item

<list>.count(<item>) Y=X.count(2) Y=2

Remove first
occurrence of item

<list>.remove(<item>) X.remove(2) X=[6,5,4,3,2,1]

Remove and return
specified item

<list>.pop(<i>) Y=X.pop(1) Y=5, X=[6,4,3,2,1]

Split string into list <string>.split(<sep>) “4,7,3”.split(“,”) ['4','7','3']

Join list into string <sep>.join(<list>) “-”.join(['4','7','3']) “4-7-3”

Problem 1: Basic statistics program

22

▪ Write a program to output the median (x) and the standard
deviation (s) of a series of values typed in by the user.

A plot of a normal distribution (or bell-shaped

curve) where each band has a width of 1

standard deviation

Problem 2

23

▪ Write a program to act as the “Magic 8-ball”.

The Magic 8-Ball is a toy used for fortune-

telling or seeking advice, developed in the

1950s and manufactured by Mattel.

It is often used in fiction, often for humor

related to its giving accurate, inaccurate,

or otherwise statistically improbable

answers. [Wikipedia]

Problem 3

24

Write a program to perform some common list functions without
using the built-in functions:

▪ reverse

▪ index
▪ Did this one already

▪ count

Problem 4

25

▪ Write a program to generate custom spam.
▪ The user must enter a list of names and a message.

▪ Then the program must print out a customised message, in each case
with <name> replaced by the actual name.

▪ (This is called “templating”.)

▪ e.g.

Congratulations <name> you have won R10 000 000! To claim
your reward <name>, send your banking details to Ms Connie Art
at another.mark@gmail.com. Don’t forget to include your bank
login details!

mailto:another.mark@gmail.com

Problem 5: The prefix-sum problem

26

▪ Given a list of integers, input, produce output where
output[i] is the sum of
input[0]+input[1]+…+input[i]

▪ Also called cumulative sum or scan.

▪ If the values are [1,2,5,3,4], the prefix sums are [1,3,8,11,15].

slide adapted from: Sophomoric Parallelism and Concurrency, Lecture 3

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Arrays

2-D Arrays and Dictionaries

CSC1

2-D Arrays and
Dictionaries

Hussein Suleman

Department of Computer Science

University of Cape Town

2-Dimensional Arrays

31

Each item in a list could itself be a list.

▪ For example:

X = [[1,2], [3,4]]

2-D arrays/lists are equivalent to matrices or grids.

▪ All operations work just as before, but every item is now a list.

▪ To access an item, remember that X[0] will give us a list, so
X[0][0] gives us the item in position (0,0) of the grid.

2-Dimensional Arrays

32

[0][0] [0][1] [0][2] [0][3]

[1][0] [1][1] [1][2] [1][3]

[2][0] [2][1] [2][2] [2][3]

[3][0] [3][1] [3][2] [3][3]

X

Problem 6

33

▪ In computer graphics, a gradient fill is when the colour of an
area gradually changes from one colour to another.
▪ Write a program to output the result of a gradient fill on a 4x4 grid of

pixels where the top-left pixel is 0 and the bottom-left is 6.

0 1 2 3

1 2 3 4

2 3 4 5

3 4 5 6

Dictionaries

34

Instead of a sequence with indices, Python also has a data
structure with arbitrary index values and no order - this is called a
dictionary.

▪ A dictionary is a set of key=value pairs.

▪ Dictionaries are very efficient for storing/retrieving values and
mapping one list to another.

▪ Define as follows:
D={'a':'apples', 'b':'bananas', 'p':'pears'}

Common Dictionary Operations

35slide adapted from: Sophomoric Parallelism and Concurrency, Lecture 3

Function Syntax Example X

Checking for key <key> in <dict> X = {1:2}
1 in X

True

Access dictionary
item

<dict>[<key>] X = {1:2, 3:4}

X[3]

4

Get keys <dict>.keys() X= {1:2, 3:4}

X.keys()

[1,3]

Get values <dict>.values() X= {1:2, 3:4}

X.values()

[2,4]

Delete item del <dict>[<key>] X= {1:2, 3:4}

del X[3]

X={1:2}

Clear dictionary <dict>.clear() X = {1:2, 3:4}

X.clear()

X={}

Iterate over keys for <var> in <dict>: X={1:'One',2:'Two’,3:'Three'}

for a in X:

print (X[a])

One
Two
Three

Problem 7

36

▪ Count the number of times each unique word occurs in a
sentence. E.g.

It was a bright cold day in April, and the clocks were striking thirteen.
Winston Smith, his chin nuzzled into his breast in an effort to escape the
vile wind, slipped quickly through the glass doors of Victory Mansions,
though not quickly enough to prevent a swirl of gritty dust from entering
along with him.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Arrays

Practical Data Structures

CSC1

Practical Data
Structures

Hussein Suleman

Department of Computer Science

University of Cape Town

n-Dimensional Arrays

41

Lists can easily contain more than 2 dimensions.

▪ For example a 3-d structure can be:
▪ X=[[[1,2],[3,4]], [[5,6],[7,8]], [[9,10],[11,12]]]

▪ X[1][1][0]= ?

Suppose we want to store a list of students, with a list of courses
for each student, and a list of test dates for each course, and a list
of chapters per test, we could use the following 4-d list:

students = [['saleem',['csc1015f',['12 april',['5','6','7']]]]]

Generic structures

42

▪ Every data structure is generic. So just as it is possible to have
n-dimensional lists, you can have dictionaries of lists, list of
dictionaries, etc.

D = {'kayleigh':[12,23,31],

'callum':[45,54,55]}

E = [{'name':'palesa','year':1},

{'name':'luqmaan','year':1}]

Problem 8: Battleships

43

▪ Write a single-player Battleships game
▪ The user is presented with a 10x10 grid with hidden warships and

must guess the locations of these warships until all are hit.

Arrays in Functions

44

▪ Passing arrays to functions
▪ In Python, the values of actual parameters cannot be changed in a

function.
▪ Arrays cannot be replaced.

▪ HOWEVER, the contents of arrays can be changed.
▪ This is a way of passing back multiple values from a function

Exercise: Scope and Arrays

45

What is the exact output of this code?

#scope.py - illustrating scope

def tester(myArr):

print("In function, before append",myArr)

myArr.append('a')

print("In function, after append",myArr)

myArr=['a','b','c']

print("In function, after reassignment",myArr)

print()

arrMain=["one","two","three"]

print("Before function call", arrMain)

tester(arrMain)

print("After function call", arrMain)

Reminder: Scope and Lifetime

46

▪ Not all variables are accessible from all parts of our program,
and not all variables exist for the same amount of time.

▪ Where a variable is accessible and how long it exists depend
on how it is defined.
▪ The part of a program where a variable is accessible or modifiable is

called a scope.

▪ The duration for which the variable exists is its lifetime.

▪ Formal parameters can also only be seen inside the function,
even if they have the same name.

Reminder: Scope

47

▪ A variable that is defined in the main body of a file is called a
global variable.
▪ It will be visible throughout the file, and also inside any file that imports

that file.

▪ A variable that is defined inside a function is local to that
function.
▪ It is accessible from the point at which it is defined until the end of the

function and it exists for as long as the function is executing.

▪ The parameter names in the function definition behave like local
variables.
▪ But they contain the values that we pass into the function when we call it.

Reminder: Global variables

48

▪ global / nonlocal
▪ Python parameters can be declared as global in a function to indicate

that the variable being used is actually declared outside any functions.
This is not recommended in general.

▪ nonlocal can be used similarly for nested functions.

494949

Poll

What is scope?

▪ A – where a variable has a value

▪ B – where a variable can be accessed/changed

▪ C – where a variable is stored

▪ D – where a variable overrides another

505050

Solution

What is scope?

▪ A – where a variable has a value

▪ B – where a variable can be accessed/changed

▪ C – where a variable is stored

▪ D – where a variable overrides another

515151

Poll

When can you read a global variable?

▪ A – if the name is not overridden locally

▪ B – when you use the word nonlocal

▪ C –only when you use the prefix “global”

▪ D – when the variable is defined in a module

525252

Solution

When can you read a global variable?

▪ A – if the name is not overridden locally

▪ B – when you use the word nonlocal

▪ C –only when you use the prefix “global”

▪ D – when the variable is defined in a module

535353

Poll

When can you write to a global variable?

▪ A – if the name is not overridden locally

▪ B – when you use the word nonlocal

▪ C –only when you use the prefix “global”

▪ D – when the variable is defined in a module

545454

Solution

When can you write to a global variable?

▪ A – if the name is not overridden locally

▪ B – when you use the word nonlocal

▪ C –only when you use the prefix “global”

▪ D – when the variable is defined in a module

Exercise

55

Describe briefly, and in clear English, what the function Enigma
returns.

def Enigma(lst,item):

tmp=[]

for i in lst:

if i!= item:

tmp.append(i)

return tmp

Exercise

56

Write down the exact output:

def main():

list1=[2,4,6,6,8,10]

list2=["Skipper","Kowalski","Rico","Private","King Julian"]

list3=[[1,2],[3,4],[5,6]]

print(Enigma(list2,"King Julian"))

print(Enigma(list1,9))

main()

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

