
Introduction to
Programming

Hussein Suleman

Department of Computer Science

Functions

Introduction to Functions

CSC1

Introduction to
Functions

Hussein Suleman

Department of Computer Science

University of Cape Town

Problem 1 Introduction

4

▪ Write a program to print out the reverse of a sentence.
▪ For example:

▪ Computer becomes retupmoC

▪ Use first principles - i.e., process the string character-by-
character.

▪ Use functions to make your program readable/modular.

5

“Go to considered harmful”

“I was terribly frightened. …

I would sit all evening silently staring at the white walls in our living room. Finally, one night at
half past two, my wife collected me weeping on the carpet in that room.

From that moment I realized that something had to be done. I started writing 'Notes on
Structured Programming' for therapeutic reasons. When that text was written, I knew what I
had to do, and I knew how I was going to attack it

‘Notes on Structured Programming’ broke on the computing community with the force of a
revolution. For several years, people had known that something was seriously wrong with
software.”

Edsger Dijkstra (1930-2002)

Dutch Computer Scientist, speaking on Structured Programming in 1968

Olson, Steve. "Sage of software." Science '84, vol. 5, Jan.-Feb. 1984, pp. 74+. Gale Academic.

Function

6

▪ A function is a named block of statements that can be
executed/called within a program.

▪ We have already used some functions:
▪ print, eval, round, ...

▪ Python stops what it is doing, runs the function, then continues
from where it stopped.

▪ Functions enable reuse and modularity of code.

▪ Functions help us to write longer/more complex programs.

So far:

7

reverse an integer without using strings

number = eval (input ("Enter a number: "))

reverse = 0

while number > 0:

digit = number % 10

number = int(number / 10)

reverse = reverse * 10 + digit

print (reverse)

Function - example

8

our program

reverse an integer without using strings

number = eval (input ("Enter a number: "))

reverse = 0

while number > 0:

digit = number % 10

number = int(number / 10)

reverse = reverse * 10 + digit

print (reverse)

somewhere else

def input (someString):

#function to read from standard input

def eval (aStringNumber):

#converts string to number

def int(aString or aFloat):

#returns an integer using floor function

def print(oneOrMoreStrings):

#outputs the strings to standard output

Function Definition / Use

9

▪ Functions can be defined and used in any order, as long as
they are used after definition.

▪ To define a function:
def some_function ():

statement1

statement2

...

▪ To use/call/invoke a function:

some_function ()

Code refactoring

10

▪ Functions can refactor code to avoid duplication

print ("Welcome")

print ("to")

print ("CS1")

print ("Welcome")

print ("to")

print ("CS2")

print ("Welcome")

print ("to")

print ("CS3")

def welcome():

print ("Welcome")

print ("to")

welcome ()

print ("CS1")

welcome ()

print ("CS2")

welcome ()

print ("CS3")

111111

Poll

Why do we use functions when we write programs?

▪ A – to reuse code

▪ B – to write large, modular programs

▪ C – to increase code readability

▪ D – all of the above

121212

Solution

Why do we use functions when we write programs?

▪ A – to reuse code

▪ B – to write large, modular programs

▪ C – to increase code readability

▪ D – all of the above

131313

Poll

What Python keyword is used to define a function?

▪ A – func

▪ B – def

▪ C – function

▪ D – define

141414

Solution

What Python keyword is used to define a function?

▪ A – func

▪ B – def

▪ C – function

▪ D – define

Exercise

15

▪ Write a function to print the sequence of integers 1-10, each on
a new line.

▪ Execute the function once.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Functions

Parameters

CSC1

Parameters

Hussein Suleman

Department of Computer Science

University of Cape Town

Parameters

20

▪ Parameters allow variation in function behaviour

print ("Welcome")

print ("to")

print ("CS1")

print ("Welcome")

print ("to")

print ("CS2")

print ("Welcome")

print ("to")

print ("CS3")

def welcome(grp):

print ("Welcome")

print ("to")

print (grp)

welcome ("CS1")

welcome ("CS2")

welcome ("CS3")

Parameters

21

▪ Every function can have a list of parameters in its definition.
▪ called the formal parameters

▪ Whenever the function is called/invoked a value must be
provided for each of the formal parameters
▪ called the actual parameters or arguments

▪ Within the function body, the parameters can be used like
variables.

Formal and Actual Parameters

22

def some_function (a, b, c):

print (a)

print (b+c)

some_function (12, 23, 34)

formal parameters
(or just “parameters”)

actual parameters
or “arguments”

Pass-By-Value

23

▪ Only a copy of the value of a parameter is ever sent to a
function.

▪ So if there is an original variable, it cannot be changed by the
function changing the parameter.

Pass-By-Value

24

def some_function (a):

a=a+1

print (a)

b = 12

some_function (b)

print (b)

13

12

output

Return Values

25

▪ Functions can return values just like mathematical functions.

▪ Use the return statement with an expression.

▪ Can be used anywhere in function and will return immediately.

Return Values

26

def square (x):

return x*x

y = square (12)

print (y)

144

output

272727

Poll

What is a formal parameter?

▪ A – name used within function

▪ B – value passed to function

▪ C – name associated with arguments

▪ D – formal names used anywhere in program

282828

Solution

What is a formal parameter?

▪ A – name used within function

▪ B – value passed to function

▪ C – name associated with arguments

▪ D – formal names used anywhere in program

292929

Poll

When does the name a refer to an actual parameter?

▪ A – return a

▪ B – a=dosomething()

▪ C – def dosomething(a)

▪ D – dosomething(a)

303030

Solution

When does the name a refer to an actual parameter?

▪ A – return a

▪ B – a=dosomething()

▪ C – def dosomething(a)

▪ D – dosomething(a)

Exercise

31

▪ Write a function to print the sequence of integers 1-n, each on
a new line, depending on the value of the parameter n.

▪ Execute the function for values 3, 5 and 7.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Functions

Identifier Scope

CSC1

Identifier Scope

Hussein Suleman

Department of Computer Science

University of Cape Town

Scope and Local Variables

36

▪ Scope refers to where a variable can be used (accessed or
changed).

▪ New variables can be created and used within functions but
they disappear when the function ends.
▪ called local variables

▪ Limiting scope:
▪ Prevents errors in one part of a program affecting other parts.

▪ Helps programmers to manage large programs.

Scope and Local Variables

37

def some_function ():

a = 1

print (a)

some_function ()

1

output

Scope and Local Variables

38

▪ Local variable names (and parameters) that are the same as
global variable names temporarily hide the global variables.

Scope and Local Variables

39

def some_function (a,c):

a = 3

b = 3

print (a,b)

a = 1

b = 2

some_function (1,2)

print (a,b)

33

12

output

Global Variables

40

▪ Global variables are not within any function.

▪ Global variables can be accessed but not changed.

▪ Use the global statement to allow changes to a global variable.

Global Variables

41

def some_function (a):

global b

b = 4

a = 3

b = 2

some_function (b)

print (b)

4

output

424242

Poll

Why is scope important?

▪ A – avoid having to track lots of variables

▪ B – prevent programming errors

▪ C – so we know which variable a name refers to

▪ D – All of the above

434343

Solution

Why is scope important?

▪ A – avoid having to track lots of variables

▪ B – prevent programming errors

▪ C – so we know which variable a name refers to

▪ D – All of the above

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Functions

Problem 1

CSC1

Problem 1

Hussein Suleman

Department of Computer Science

University of Cape Town

Problem 1

48

▪ Write a program to print out the reverse of a sentence.

▪ For example:
Enter a sentence: Computer

retupmoC

▪ Use first principles - i.e., process the string character-by-
character.

▪ Use functions to make your program readable/modular.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Functions

Modular Code

CSC1

Modular Code

Hussein Suleman

Department of Computer Science

University of Cape Town

docstring

53

▪ Functions should be documented by specifying their purpose in
a string immediately after the header.

▪ It is recommended that you use """ (triple quotes - for multi-line
strings) for all docstrings.

▪ Use func.__doc__ to check the docstring.

docstring

54

def cube (x):

"""Return the cube of x."""

return x*x*x

def square (x):

"""Return the square of x.

x can be any numerical value"""

return x*x

nested functions

55

▪ Functions can be composed similarly to mathematical
functions.

def cube (x):

return x*x*x

def square (x):

return x*x

def power (a, b):

return a**b

print (power (cube (2), square (2)))

main function

56

▪ Common practice is to wrap a program into a function called
"main", then invoke this function to execute the program.

cube program

def cube (x):

return x*x*x

def main ():

print (cube (2))

main()

Writing your own modules

57

▪ Any file with functions can be imported.

▪ Check __name__ variable
▪ if it is "__main__", then this file was executed

▪ otherwise, this file was imported

Writing your own modules

58

cube module

def cube (x):

return x*x*x

def main ():

print (cube (2))

if __name__=="__main__":

main()

test cube module

import a

print (a.cube(3))

Exercise

59

▪ Modify the program to reverse a string such that it can be used
as a separate reusable module.

▪ Use a main function that asks for input and prints the reversed
string, as before.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Functions

Problem 2-3

CSC1

Problem 2-3

Hussein Suleman

Department of Computer Science

University of Cape Town

Problem 2

64

▪ Write a function that prints a text heading inside a box made up
of + characters.
▪ Store this function as a module.
▪ Use an optional parameter to specify the padding within the box.

+++++++++

+ Hello +

+++++++++

output

Default values for parameters

65

▪ Functions can have zero or more parameters with default
values in their definition.

▪ All parameters with default values must be at the end of the
parameter list.
▪ e.g., once you have a default value, all subsequent parameters must

have a default value as well.

Default values for parameters

66

▪ Evaluated at the time of function definition, not invocation.

▪ Whenever the function is called/invoked, the arguments with
default values are optional.

▪ Within the function body, parameters are still used as variables.

Recall: Formal Parameters

67

def some_function (a, b, c):

print (a)

print (b+c)

some_function (12, 23, 34)

formal parameters

actual parameters

Default values for formal parameters

68

def some_function (a, b, c=10):

print (a)

print (b+c)

some_function (12, 23, 34)

some_function (12, 23)

formal parameter
with default value

optional parameter

Problem 2

69

▪ Write a function that prints a text heading inside a box made up
of + characters.
▪ Store this function as a module.
▪ Use an optional parameter to specify the padding within the box.

+++++++++

+ Hello +

+++++++++

output

Problem 3

70

▪ There are special Unicode characters for box corners and
edges.
▪ For example “\u250F” is the top left corner symbol.

▪ Modify your heading program to use these characters instead
of “+”.

┏━━━┓
┃ X ┃
┗━━━┛

output

Unicode box test

print ("\u250F\u2501\u2501\u2501\u2513\n")

print ("\u2503 X \u2503\n\u2517\u2501\u2501\u2501\u251B\n")

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

