
Introduction to
Programming

Hussein Suleman

Department of Computer Science

Recursion

The Concept of Recursion

CSC1

Recursion

Hussein Suleman

Department of Computer Science

University of Cape Town

Concept: Recursion

4

▪ It was a dark and stormy night, and the head of the brigands
said to Antonio:“Antonio, tell us a tale”. And so Antonio began:
▪ “It was a dark and stormy night and the head of the brigands said to

Antonio, “Antonio, tell us a tale”. And so Antonio began:
▪ “It was a dark and stormy night and the head of the brigands said to Antonio,

“Antonio, tell us a tale”. And so Antonio began:

▪ “It was a dark and stormy night and the head of the brigands said to Antonio, “Antonio,
tell us a tale”. And so Antonio began:

▪ “It was a dark and stormy night and the head of the brigands said to Antonio,
“Antonio, tell us a tale”. And so Antonio began:

• “It was a dark and stormy night and ….

Concept: Recursion

5

 The fern leaf

Concept: Recursion

6

▪ Selfies
with
mirrors

Recursive definitions:

7

A description of something that refers to itself is called a
recursive definition.

e.g.

GNU: GNU is Not Unix

Recursive definitions

8

▪ A recursive definition of the
ancestors of person p:
▪ p’s parents are p’s ancestors

(base case);

▪ The parents of any ancestors of
p are also the ancestors of p
(recursive step).

p

Recursive definitions:

9

A description of something that refers to itself is called a
recursive definition.

e.g.

▪ The set of prime numbers can be defined as the unique set of
positive integers satisfying:
▪ 1 is not a prime number

▪ any other positive integer is a prime number if and only if it is not
divisible by any prime number smaller than itself.

▪ But how is this useful to computer science …

Recursive Functions

10

▪ A function can call itself.

▪ A function that does this is a recursive function.

def brigand():

print("It was a dark and stormy night, and the head of

the brigands said to Antonio:“Antonio, tell us a tale”. And

so Antonio began:")

brigand()

brigand()

Recursive Functions

11

A recursive function is a function that includes a call to itself,
based on the general problem-solving technique of breaking
down a task into subtasks.

Recursion can be used whenever one subtask is a smaller
version of the original task.

Defining recursive functions

12

▪ A recursive function calls itself.

▪ Recursive functions have 2 key elements:
▪ one or more recursive calls.

▪ stopping condition, or base case, where no recursion is required.

▪ Recursion is the equivalent of mathematical induction!

Example: Recursive Functions

13

▪ Now, with a base case

def brigand(n):

if n==0:

print(“and he immediately finished.")

else:

print("It was a dark and stormy night, and the head

of the brigands said to Antonio:“Antonio, tell us a tale”.

And so Antonio began:")

brigand(n-1)

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Recursion

Factorial

CSC1

Factorial

Hussein Suleman

Department of Computer Science

University of Cape Town

181818

Poll

Why is recursion important?

▪ A – define problems in terms of smaller problems

▪ B – elegant and natural solutions

▪ C – analogous to mathematical induction

▪ D – all of the above

191919

Solution

Why is recursion important?

▪ A – define problems in terms of smaller problems

▪ B – elegant and natural solutions

▪ C – analogous to mathematical induction

▪ D – all of the above

202020

Poll

What are the features present in most recursive functions?

▪ A – function that is nested, nonlocal

▪ B – function that calls itself, base case

▪ C – global variables, main calling functions

▪ D –modules, def main ()

212121

Solution

What are the features present in most recursive functions?

▪ A – function that is nested, nonlocal

▪ B – function that calls itself, base case

▪ C – global variables, main calling functions

▪ D –modules, def main ()

Recursion: Factorial

22

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

Recursion: Factorial - derivation

23

We know:

n!= 1 x 2 x 3 x 4 … (n-2) x (n-1) x n

Then,

(n-1)!= 1 x 2 x 3 x 4 … (n-2) x (n-1)

Thus, n! = n x (n-1)!

This is a recursive definition in terms of a smaller problem.

All, we then need is a stopping condition, and n=0 works since
factorials are defined for natural numbers.

Recursive Factorial function

24

def factRec(n):

if n==0:

return 1 #base case – ends recursion

else:

return n*factRec(n-1)

#recursive call – does a little work and uses the

results from smaller version of same problem

function definition – must have

parameter

Further explanation - Recursion: Factorial

25

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

5!=5*4!4*3!3*2!2*1!1*0!1

Further explanation - Recursion: Factorial

26

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

5!=5*4!4*3!3*2!2*1!1*1

Further explanation - Recursion: Factorial

27

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

5!=5*4!4*3!3*2!2*1

Further explanation - Recursion: Factorial

28

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

5!=5*4!4*3!3*2

Further explanation - Recursion: Factorial

29

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

5!=5*4!4*6

Further explanation - Recursion: Factorial

30

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

5!=5*24

Further explanation - Recursion: Factorial

31

Classic introductory example - Factorial function:

for n>=1

stopping condition, or base case

recursive call

120

Iterative solution: Factorial function

32

def fact(n):

f=1

for i in range(1,n+1):

f=f*i

return f

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Recursion

Recursion Problems

CSC1

Recursion
Problems

Hussein Suleman

Department of Computer Science

University of Cape Town

Problem 1

37

Write a recursive function to sum the first n positive
integers.

#fill in the code for this function

def sum (n):

#code goes here

#what is the base case?

#what is the recursive step?

More Recursion Problems

38

▪ Problem 2: Calculate xn

▪ Problem 3: Count the number of characters in a string.

▪ Problem 4: Count the number of words in a list.

▪ Problem 5: Search/replace characters in a string.

▪ Problem 6: Calculate Greatest Common Divisor (GCD).
▪ Euclid’s Algorithm.

▪ Problem 7: Draw a triangle of height n.

▪ Problem 8: Print out a list of values.

▪ Problem 9: Reverse a string.

▪ Problem 10: Find the sum of integers from m to n.

Fun with recursion

39

Pitfall: Infinite Recursion

40

In our examples, the series of recursive calls eventually reached
a call of the method that did not involve recursion (a stopping
case).

If instead, every recursive call had produced another recursive
call, then a call to that method would, in theory, run forever.

This is called infinite recursion.

In practice, such a method runs until the computer runs out of resources,
and the program terminates abnormally.

Infinite recursion example

41

def sumRec(n):

if n==0:

return 0

else:

return sumRec(n)+n #logic error here

A Closer Look at Recursion

42

■ When the computer encounters a recursive call, it must
temporarily suspend its execution of a function
 It does this because it must know the result of the recursive call before it

can proceed

 It saves all the information it needs to continue the computation later on,
when it returns from the recursive call

■ Ultimately, this entire process terminates when one of the
recursive calls does not depend upon recursion to return.

What's Happening Inside Python

43

▪ Python keeps track of every function that has been called in a
part of memory called a stack.

▪ This allows Python to return to the next point after a function
call.

▪ The same holds for recursive functions.
▪ e.g., sum(3) calls sum(2) calls sum(1) calls sum(0)

sum(0)

sum(1)

sum(2)

sum(3)

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Recursion

Towers

CSC1

Towers

Hussein Suleman

Department of Computer Science

University of Cape Town

Towers of Hanoi

48

 Problem: Move a stack of discs one disc at a time from one
tower to another, such that no disc may be placed on a larger
disc.

puzzle game invented in the late 1800s

Hanoi

49

a b c

Hanoi: 1 disk

50

a b c

Hanoi: 2 disks

51

a b c

Hanoi: 3 disks

52

a b c

3

2

1

Hanoi: 4 disks

53

c

4

3

2

1

Towers of Hanoi

54

▪ Algorithm:
▪ Move n-1 discs from source to spare tower

▪ Move nth disc from source to destination tower

▪ Move n-1 discs from spare to destination tower

▪ Stop when no more discs … or one disc

https://www.youtube.com/watch?v=rVPuzFYlfYE

Exercise

55

▪ Write a program to show the steps in the Towers of Hanoi
solution.

Exercise: what does this function compute?

56

def mystery(x):

if x==1:

return 2

if x==0:

return 1

return 2*mystery(x-1)

Problem 11

57

▪ Draw a half-hourglass using
a recursive function
▪ Hourglass(“MARSUPIAL”)

MARSUPIAL

MARSUPIA

MARSUPI

MARSUP

MARSU

MARS

MAR

MA

M

MA

MAR

MARS

MARSU

MARSUP

MARSUPI

MARSUPIA

MARSUPIAL

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Recursion

Fibonacci and Performance

CSC1

Fibonacci and
Performance

Hussein Suleman

Department of Computer Science

University of Cape Town

Iterative Fibonacci numbers

62

▪ A Fibonacci number is the sum of the previous 2 Fibonacci
numbers.
▪ 0, 1, 1, 2, 3, 5, 8, 13, …

def fib(n):

curr=1

prev=1

for i in range(n-2):

curr,prev=curr+prev,curr

return curr

Fibonacci in Australia

63

▪ In 1859, a farmer introduced 24 grey rabbits to remind him of
home. At the time, the man wrote:
▪ "The introduction of a few rabbits could do little harm and might

provide a touch of home, in addition to a spot of hunting."

▪ For one pair, by 1900….(480 months)…

▪ Fib(480)

Problem 12: Recursive Fibonacci numbers

64

Recursive step:

Every Fibonacci number is the sum of the previous two numbers.

fib(n) = fib(n-2) + fib(n-1)

Base case:

The first 2 Fibonacci numbers are 0 and 1.

fib(0) = 0

fib(1) = 1

Recursive Fibonacci numbers

65

Elegant solution.

Not very efficient, because of many duplicate function calls

Recursion Versus Iteration

66

▪ Recursion is not absolutely necessary.
▪ Any task that can be done using recursion can also be done in a non-

recursive manner.

▪ A non-recursive version of a method is called an iterative version.

▪ An iteratively written method will typically use loops of some
sort in place of recursion.

▪ A recursively written method can be simpler, but will usually run
slower and use more storage than an equivalent iterative
version.

Iterative version of prefix sum

67

#iterative definition

def prefixSum(arr):

tmp=[]

for i in range(len(arr)):

if i==0:

tmp.append(arr[0]) #the first one is just a copy

else:

tmp.append(tmp[i-1]+arr[i]) #cummulative sum

return tmp

Exercise: Recursive prefix sum

68

recursive definition

def prefixSumRec(arr):

fill in the rest of the function

test code

print (prefixSumRec ([1,5,2,7,4,6,5,3,6]))

Exercise: What does this function display?

69

def pattern(s,n):

if n==0:

return

print(s)

pattern('-'+s,n-1)

print(s)

Problem 13

70

▪ A nested number list is a list whose elements are either:
▪ numbers

▪ nested number lists

e.g. [1, 2, [11, 13], [8,[2,3]]]

Write a recursive function to sum all the numbers in a nested
number list

e.g. r_sum([1, 2, [11, 13], [8,[2,3]]]) returns 40

Recursive partitioning

71

def recPow(a,n):

"""raises a to power n"""

if n==0: return 1

else:

return a*recPow(a,n-1)

def recPowAlt (a,n):

"""raises a to power n"""

if n==0: return 1

else:

factor=recPowAlt(a,n//2)

if n%2==0:

return factor*factor

else:

return factor*factor*a

Which is the more efficient algorithm?

Recursion - Justification

72

▪ Recursion is one of the most important ideas in computer
science, but it's usually viewed as one of the harder parts of
programming to grasp.

▪ We can work out very concise and elegant solutions to
problems by thinking recursively.

▪ Basic approach traversing for non-linear data structures, such
as trees.

Recursion – Justification (2)

73

▪ Also, there are problems whose solutions are inherently
recursive, because they need to keep track of prior state. e.g.:
▪ divide-and-conquer algorithms such as Quicksort (coming soon….)

▪ All of these algorithms can be implemented iteratively with the
help of a stack, but the need for the stack arguably nullifies the
advantages of the iterative solution.

Recursion and Functional Languages

74

▪ Recursion is a key concept for functional programming
languages, such as Haskell.

▪ Lisp is the second-oldest high-level programming language in
widespread use today; only Fortran is older.
▪ Recursion is a key component of language.

▪ Closely related to AI and formal logic.

▪ Resurgence today, especially for parallel programming.

Thinking Recursively

75

1. There is no infinite recursion

▪ Every chain of recursive calls must reach a stopping case

2. Each stopping case returns the correct value for that case

3. For the cases that involve recursion: if all recursive calls
return the correct value, then the final value returned by the
method is the correct value

These properties follow a technique also

known as mathematical induction

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

