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Concept: Recursion

4

▪ It was a dark and stormy night, and the head of the brigands 
said to Antonio:“Antonio, tell us a tale”. And so Antonio began:
▪ “It was a dark and stormy night and the head of the brigands said to 

Antonio, “Antonio, tell us a tale”. And so Antonio began:
▪ “It was a dark and stormy night and the head of the brigands said to Antonio, 

“Antonio, tell us a tale”. And so Antonio began:

▪ “It was a dark and stormy night and the head of the brigands said to Antonio, “Antonio, 
tell us a tale”. And so Antonio began:

▪ “It was a dark and stormy night and the head of the brigands said to Antonio, 
“Antonio, tell us a tale”. And so Antonio began:

• “It was a dark and stormy night and ….



Concept: Recursion
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 The fern leaf



Concept: Recursion
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▪ Selfies 
with 
mirrors



Recursive definitions:
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A description of something that refers to itself is called a 
recursive definition.

e.g.

GNU: GNU is Not Unix



Recursive definitions

8

▪ A recursive definition of the 
ancestors of person p:
▪ p’s parents are p’s ancestors 

(base case);

▪ The parents of any ancestors of 
p are also the ancestors of p 
(recursive step).

p



Recursive definitions:

9

A description of something that refers to itself is called a 
recursive definition.

e.g.

▪ The set of prime numbers can be defined as the unique set of 
positive integers satisfying:
▪ 1 is not a prime number

▪ any other positive integer is a prime number if and only if it is not 
divisible by any prime number smaller than itself.

▪ But how is this useful to computer science …



Recursive Functions

10

▪ A function can call itself. 

▪ A function that does this is a recursive function.

def brigand():

print("It was a dark and stormy night, and the head of 

the brigands said to Antonio:“Antonio, tell us a tale”. And 

so Antonio began:")

brigand()

brigand()



Recursive Functions

11

A recursive function is a function that includes a call to itself, 
based on the general problem-solving technique of breaking 
down a task into subtasks.

Recursion can be used whenever one subtask is a smaller 
version of the original task.



Defining recursive functions

12

▪ A recursive function calls itself.

▪ Recursive functions have 2 key elements:
▪ one or more recursive calls.

▪ stopping condition, or base case, where no recursion is required.

▪ Recursion is the equivalent of mathematical induction!



Example: Recursive Functions

13

▪ Now, with a base case

def brigand(n):

if n==0: 

print(“and he immediately finished.")

else:

print("It was a dark and stormy night, and the head 

of the brigands said to Antonio:“Antonio, tell us a tale”. 

And so Antonio began:")

brigand(n-1)
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Poll

Why is recursion important?

▪ A – define problems in terms of smaller problems

▪ B – elegant and natural solutions

▪ C – analogous to mathematical induction

▪ D – all of the above
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Solution

Why is recursion important?

▪ A – define problems in terms of smaller problems

▪ B – elegant and natural solutions

▪ C – analogous to mathematical induction

▪ D – all of the above
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Poll

What are the features present in most recursive functions?

▪ A – function that is nested, nonlocal

▪ B – function that calls itself, base case

▪ C – global variables, main calling functions

▪ D –modules, def main ()
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Solution

What are the features present in most recursive functions?

▪ A – function that is nested, nonlocal

▪ B – function that calls itself, base case

▪ C – global variables, main calling functions

▪ D –modules, def main ()



Recursion: Factorial

22

Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call



Recursion: Factorial - derivation

23

We know:

n!= 1 x 2 x 3 x 4 … (n-2) x (n-1) x n

Then,

(n-1)!= 1 x 2 x 3 x 4 … (n-2) x (n-1)

Thus, n! = n x (n-1)!

This is a recursive definition in terms of a smaller problem.

All, we then need is a stopping condition, and n=0 works since 
factorials are defined for natural numbers.



Recursive Factorial function

24

def factRec(n):

if n==0:

return 1  #base case – ends recursion

else:

return n*factRec(n-1)  

#recursive call – does a little work and uses the 

results from smaller version of same problem

function definition – must have 

parameter



Further explanation - Recursion: Factorial
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Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

5!=5*4!4*3!3*2!2*1!1*0!1



Further explanation - Recursion: Factorial
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Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

5!=5*4!4*3!3*2!2*1!1*1



Further explanation - Recursion: Factorial
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Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

5!=5*4!4*3!3*2!2*1



Further explanation - Recursion: Factorial

28

Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

5!=5*4!4*3!3*2



Further explanation - Recursion: Factorial
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Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

5!=5*4!4*6



Further explanation - Recursion: Factorial
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Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

5!=5*24



Further explanation - Recursion: Factorial

31

Classic introductory example - Factorial function:

for n>=1

# stopping condition, or base case

# recursive call

120



Iterative solution: Factorial function

32

def fact(n):

f=1

for i in range(1,n+1):

f=f*i

return f
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Problem 1

37

Write a recursive function to sum the first n positive 
integers.

#fill in the code for this function

def sum (n):

#code goes here

#what is the base case?

#what is the recursive step?



More Recursion Problems

38

▪ Problem 2: Calculate xn

▪ Problem 3: Count the number of characters in a string.

▪ Problem 4: Count the number of words in a list.

▪ Problem 5: Search/replace characters in a string.

▪ Problem 6: Calculate Greatest Common Divisor (GCD). 
▪ Euclid’s Algorithm.

▪ Problem 7: Draw a triangle of height n.

▪ Problem 8: Print out a list of values.

▪ Problem 9: Reverse a string.

▪ Problem 10: Find the sum of integers from m to n.



Fun with recursion

39



Pitfall:  Infinite Recursion

40

In our examples, the series of recursive calls eventually reached 
a call of the method that did not involve recursion (a stopping 
case).

If instead, every recursive call had produced another recursive 
call, then a call to that method would, in theory, run forever.

This is called infinite recursion.

In practice, such a method runs until the computer runs out of resources, 
and the program terminates abnormally.



Infinite recursion example

41

def sumRec(n):

if n==0:

return 0

else:

return sumRec(n)+n   #logic error here



A Closer Look at Recursion

42

■ When the computer encounters a recursive call, it must 
temporarily suspend its execution of a function
 It does this because it must know the result of the recursive call before it 

can proceed

 It saves all the information it needs to continue the computation later on, 
when it returns from the recursive call

■ Ultimately, this entire process terminates when one of the 
recursive calls does not depend upon recursion to return.



What's Happening Inside Python

43

▪ Python keeps track of every function that has been called in a 
part of memory called a stack.

▪ This allows Python to return to the next point after a function 
call.

▪ The same holds for recursive functions.
▪ e.g., sum(3) calls sum(2) calls sum(1) calls sum(0)

sum(0)

sum(1)

sum(2)

sum(3)
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Towers of Hanoi
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 Problem: Move a stack of discs one disc at a time from one 
tower to another, such that no disc may be placed on a larger 
disc.

puzzle game invented in the late 1800s



Hanoi
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a b c



Hanoi: 1 disk
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a b c



Hanoi: 2 disks
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a b c



Hanoi: 3 disks
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a b c

3

2

1



Hanoi: 4 disks
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c

4

3

2

1



Towers of Hanoi
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▪ Algorithm:
▪ Move n-1 discs from source to spare tower

▪ Move nth disc from source to destination tower

▪ Move n-1 discs from spare to destination tower

▪ Stop when no more discs … or one disc

https://www.youtube.com/watch?v=rVPuzFYlfYE



Exercise

55

▪ Write a program to show the steps in the Towers of Hanoi 
solution.



Exercise: what does this function compute?
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def mystery(x):   

if x==1:       

return 2   

if x==0:       

return 1    

return 2*mystery(x-1) 



Problem 11

57

▪ Draw a half-hourglass using 
a recursive function
▪ Hourglass(“MARSUPIAL”)

MARSUPIAL

MARSUPIA

MARSUPI

MARSUP

MARSU

MARS

MAR

MA

M

MA

MAR

MARS

MARSU

MARSUP

MARSUPI

MARSUPIA

MARSUPIAL
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Iterative Fibonacci numbers

62

▪ A Fibonacci number is the sum of the previous 2 Fibonacci 
numbers.
▪ 0, 1, 1, 2, 3, 5, 8, 13, …

def fib(n):

curr=1

prev=1

for i in range(n-2):

curr,prev=curr+prev,curr

return curr



Fibonacci in Australia

63

▪ In 1859, a farmer introduced 24 grey rabbits to remind him of 
home. At the time, the man wrote:
▪ "The introduction of a few rabbits could do little harm and might 

provide a touch of home, in addition to a spot of hunting."

▪ For one pair, by 1900….(480 months)…

▪ Fib(480)



Problem 12: Recursive Fibonacci numbers
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Recursive step:

Every Fibonacci number is the sum of the previous two numbers.

fib(n) = fib(n-2) + fib(n-1)

Base case:

The first 2 Fibonacci numbers are 0 and 1.

fib(0) = 0

fib(1) = 1



Recursive Fibonacci numbers

65

Elegant solution.

Not very efficient, because of many duplicate function calls



Recursion Versus Iteration

66

▪ Recursion is not absolutely necessary.
▪ Any task that can be done using recursion can also be done in a non-

recursive manner.

▪ A non-recursive version of a method is called an iterative version.

▪ An iteratively written method will typically use loops of some 
sort in place of recursion.

▪ A recursively written method can be simpler, but will usually run 
slower and use more storage than an equivalent iterative 
version.



Iterative version of prefix sum
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#iterative definition

def  prefixSum(arr):

tmp=[]

for i in range(len(arr)):

if i==0:

tmp.append(arr[0]) #the first one is just a copy 

else:

tmp.append(tmp[i-1]+arr[i]) #cummulative sum

return tmp



Exercise: Recursive prefix sum

68

# recursive definition 

def prefixSumRec(arr):

# fill in the rest of the function

# test code

print (prefixSumRec ([1,5,2,7,4,6,5,3,6]))



Exercise: What does this function display?

69

def pattern(s,n):   

if n==0:        

return   

print(s)   

pattern('-'+s,n-1)   

print(s)



Problem 13

70

▪ A nested number list is a list whose elements are either:
▪ numbers

▪ nested number lists

e.g. [1, 2, [11, 13], [8,[2,3]]]

Write a recursive function to sum all the numbers in a nested 
number list

e.g. r_sum([1, 2, [11, 13], [8,[2,3]]])  returns 40



Recursive partitioning

71

def recPow( a,n):

"""raises a to power n"""

if n==0: return 1

else:

return a*recPow(a,n-1)

def recPowAlt ( a,n):

"""raises a to power n"""

if n==0: return 1

else:

factor=recPowAlt(a,n//2)

if n%2==0:

return factor*factor

else:

return factor*factor*a

Which is the more efficient algorithm?



Recursion - Justification 

72

▪ Recursion is one of the most important ideas in computer 
science, but it's usually viewed as one of the harder parts of 
programming to grasp.

▪ We can work out very concise and elegant solutions to 
problems by thinking recursively.

▪ Basic approach traversing for non-linear data structures, such 
as trees.



Recursion – Justification (2) 

73

▪ Also, there are problems whose solutions are inherently 
recursive, because they need to keep track of prior state. e.g.:
▪ divide-and-conquer algorithms such as Quicksort (coming soon….) 

▪ All of these algorithms can be implemented iteratively with the 
help of a stack, but the need for the stack arguably nullifies the 
advantages of the iterative solution.



Recursion and Functional Languages

74

▪ Recursion is a key concept for functional programming 
languages, such as Haskell.

▪ Lisp is the second-oldest high-level programming language in 
widespread use today; only Fortran is older.
▪ Recursion is a key component of language.

▪ Closely related to AI and formal logic.

▪ Resurgence today, especially for parallel programming.



Thinking Recursively

75

1. There is no infinite recursion

▪ Every chain of recursive calls must reach a stopping case

2. Each stopping case returns the correct value for that case

3. For the cases that involve recursion:  if all recursive calls 
return the correct value, then the final value returned by the 
method is the correct value

These properties follow a technique also 

known as mathematical induction
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