
Introduction to
Programming

Hussein Suleman

Department of Computer Science

Testing and Debugging

Errors

CSC1

Errors

Hussein Suleman

Department of Computer Science

University of Cape Town

Problem

4

Write a program that reads in a list of test scores and classifies
them into ranks:

1, 2+, 2-, 3, FS, F

and, for each rank, displays:
▪ the number of students in the rank

▪ (output as a histogram).

Problem

5

Write a program that reads in a list of test scores and classifies
them into ranks:

1, 2+, 2-, 3, FS, F

and, for each rank, displays:
▪ the number of students in the rank

▪ (output as a histogram).
Histogram:

A graphical display where the data is grouped

into ranges (such as "100 to 149", "150 to 199",

etc), and then plotted as bars. Similar to a Bar

Graph, but in a Histogram each bar is for a

range of data.

markClassificationSkeleton.py

6

def main():

i,Fi,uS,S,Th,fS,Fa=0,0,0,0,0,0,0 #what am I planning to do with these?

val = input("Enter next test score #"+str(i)+" (press 'Enter' key to stop):")

while val!='': #sentinal loop to read in unspecified no. of test scores

i+=1

TODO: add in code to count number in each category

val =input("Enter next test score #"+str(i)+" (press 'Enter' key to stop):")

histogram(Fi,uS,S,Th,fS,Fa)

print('='*10) #Prints line to indicate end of program

def histogram(Fi,uS,S,Th,fS,Fa):

print("<<< Insert histogram here >>>")

if __name__ == '__main__': #what does this do?

main()

markClassificationSkeleton.py

7

▪ How do we demonstrate that the completed program is
correct?

Testing and Debugging

8

▪ Test:

▪ Check if there are errors.

▪ Demonstrate that no errors have been found.

▪ Debug:

▪ Find the cause of a known error.

▪ Repair the code.

Errors and testing: Quick Poll

9

In a typical hour spent programming, how many minutes do you
spend fixing errors?

Errors

10

▪ What is an error?
▪ When your program does not behave as intended or expected.

▪ What is a bug?
▪ “…there is a bug in my program …”

▪ Debugging
▪ the art of removing errors

Errors and testing: Quick Poll

11

▪ In a typical hour spent programming, how many minutes do you
spend fixing errors? 45+?

▪ Errors are unavoidable, even for the best programmers.

▪ Aim to program so that debugging time is reduced
▪ for yourself.

▪ and others in the future.

The First “Bug”?

12

The tale is that the original 'bug' was a moth,
which caused a hardware fault in the Harvard
Mark I.

The moth was found by Grace
Hopper

▪ Rear Admiral Grace Murray
Hopper (December 9, 1906 -
January 1, 1992) was an
American computer scientist
and naval officer

▪ Worked on Mark I at Harvard

▪ The first USA computer
science "Man of the Year" in
1969.

Interview on Letterman show
https://www.youtube.com/watch?v=1vcErOPofQ&list=PLBFD1BAAAD218D3EB&index=180

Reference: http://en.wikipedia.org/wiki/Grace_Hopper

https://www.youtube.com/watch?v=1vcErOPofQ&list=PLBFD1BAAAD218D3EB&index=180
http://en.wikipedia.org/wiki/Grace_Hopper

Types of Errors – When (1)

13

▪ “Compile”-time Error
▪ Discovered when program is checked by the Python interpreter, before

it is run.

▪ A result of improper use of Python language.
▪ usually Syntax Errors.

▪ e.g. product = x y

Types of Errors – When (2)

14

▪ Run-time Error
▪ Program structure is correct, but does not execute as expected.

e.g.

x = 0

y = 15/x

▪ Examples of Python runtime errors:
▪ division by zero

▪ performing an operation on incompatible types

▪ using an identifier that has not been defined

Types of Errors – Why (1)

15

▪ Syntax Error
▪ Program does not pass checking/compiling stage.

▪ Improper use of Python language.
▪ e.g. product = x y

Syntax errors are analogous to spelling or

grammar mistakes in a language like English:

e.g. “Would you some tea?”

does not make sense – it is missing a verb.

Types of Errors – Why (1)

16

▪ Common Python syntax errors:
▪ leaving out a keyword

▪ putting a keyword in the wrong place

▪ leaving out a symbol, such as a colon, comma or brackets

▪ misspelling a keyword

▪ incorrect indentation

Types of Errors – Why (2)

17

▪ Logic Error
▪ Program passes checking/compiling and runs but produces incorrect

results or no results - because of a flaw in the algorithm or
implementation of algorithm.
▪ e.g. product = x + y

181818

Poll

What kind of error is in this program?

▪ A – compile-time, syntax

▪ B – compile-time, logic

▪ C – runtime, syntax

▪ D – runtime, logic

def Maximum(x,y):

z=x

if (x<y): z==y

return z

191919

Solution

What kind of error is in this program?

▪ A – compile-time, syntax

▪ B – compile-time, logic

▪ C – runtime, syntax

▪ D – runtime, logic

def Maximum(x,y):

z=x

if (x<y): z==y

return z

202020

Poll

What kind of error is in this program?

▪ A – compile-time, syntax

▪ B – compile-time, logic

▪ C – runtime, syntax

▪ D – runtime, logic

def Maximum(x,y):

z=x

if (x>y): z=y

return z

212121

Solution

What kind of error is in this program?

▪ A – compile-time, syntax

▪ B – compile-time, logic

▪ C – runtime, syntax

▪ D – runtime, logic

def Maximum(x,y):

z=x

if (x>y): z=y

return z

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Testing and Debugging

Testing Approaches

CSC1

Testing
Approaches

Hussein Suleman

Department of Computer Science

University of Cape Town

Errors: Recipe Analogy

26

Pancake Recipe:

30 ml olive oil

6 eggs

4 potatoes

1 clove minced garlic

Chop ptatos into small cubes. Vigourously eggs beat. Add
chopped onion, garlic and oil to pan and fry till golden. Cut
potatoes into thin slices. Pour egg into pan and cook till set.

Errors: Recipe Analogy

27

Pancake Recipe:

30 ml olive oil

6 eggs

4 potatoes

1 clove minced garlic

Chop ptatos into small cubes. Vigourously eggs beat. Add
chopped onion, garlic and oil to pan and fry till golden. Cut
potatoes into thin slices. Pour egg into pan and cook till set.

Logic

error

Compile time

errors

Run time error

Exercise

28

def Sorty(x,y,z):

if x>y:

if y>z:

print(x y z)

else:

print(x,z,y)

print(c)

else:

if y<z:

print(z,y,x)

else:

print(y,x,z)

Sorty(1,2,3)

This program aims to sort three

numbers into increasing order.

Can you find errors in this program?

If so, list the type of error (syntax,

runtime, etc.)

Exercise

29

def Sorty(x,y,z):

if x>y:

if y>z:

print(x,y,z)

else:

print(x,z,y)

else:

if y<z:

print(z,y,x)

else:

print(y,x,z)

Sorty(1,2,3)

After fixing the syntax errors, run this

to uncover additional errors…

Supply different numbers to Sorty:

1,2,3

1,3,2

etc.

How many combinations are there?

Testing Methods

30

▪ Programs must be thoroughly tested for all possible
input/output values to make sure the programs behave
correctly.

Exhaustive testing

31

▪ Ideal testing strategy:
▪ Run program using all possible inputs.

▪ Compare actual outputs to expected outputs.

Exhaustive testing

32

▪ But how do we test for all values of integers?

def Threshold(val):

if val>10000: val=10000

return val

▪ This simple program asks the user for one integer.
▪ How many possible input values are there in Python?

Random Testing

33

▪ A subset of values in the input domain is used for testing.

▪ Important to ensure that values are distributed over input domain.

▪ Can use random number generation.

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Testing and Debugging

Equivalence Classes

CSC1

Equivalence
Classes

Hussein Suleman

Department of Computer Science

University of Cape Town

Equivalence Classes & Boundary Values

38

▪ Equivalence classes: Group input values into sets of values
with similar expected behaviour and choose candidate values.
▪ e.g.

(100, -90, 1000)

(40000, 100000)

▪ Boundary value analysis: Choose values at, and on either
side of, the boundaries of the equivalence classes.
▪ e.g. 9999, 10000, 10001

def Threshold(val):

if val>10000: val=10000

return val

Equivalence Classes & Boundary Values

39

▪ Write a program to classify test scores into ranks:

1, 2+, 2-, 3, F

Equivalence Classes & Boundary Values

40

Example: Test score program

Equivalence classes:

0 1

0

2

0

3

0

4

0

5

0

6

0

7

0

8

0

9

0

10

0

50 to 59

60 to 69

70 to 74

75 to 100

over

100

less than

0

F

errorerror
3

1

2+

2-0 to 49

Equivalence Classes & Boundary Values

41

Equivalence Class Sample Value

Scores greater than 100 150

Scores between 75 and 100 95

Scores between 70 and 74 72

Scores between 60 and 69 65

Scores between 50 and 59 55

Scores between 0 and 49 30

Scores less than 0 -50

Boundary Value Just Above Boundary Value Just Below Boundary Value

100 101 99

75 76 74

70 71 69

60 61 59

50 51 49

0 1 -1

Exercise

42

def Sorty(x,y,z):

if x>y:

if y>z:

print(x,y,z)

else:

print(x,z,y)

else:

if y<z:

print(z,y,x)

else:

print(y,x,z)

What are the equivalence

classes for this program?

What are the boundary

values for this program?

Exercise

43

def Sorty(x,y,z):

if x>y:

if y>z:

print(x,y,z)

else:

print(x,z,y)

else:

if y<z:

print(z,y,x)

else:

print(y,x,z)

What are the equivalence classes for

this program?

There are 6 classes. Examples are:

Sorty(3,2,1) #x>y>z

Sorty(3,1,2) #x>z>y

Sorty(2,1,3) #z>x>y

Sorty(2,3,1) #y>x>z

Sorty(1,3,2) #y>z>x

Sorty(1,2,3) #z>y>x

Boundaries: x=z, x=y, y=z, x=y=z

Exercise

44

def Sorty(x,y,z):

if x>y:

if y>z:

print(x,y,z)

else:

print(x,z,y)

else:

if y<z:

print(z,y,x)

else:

print(y,x,z)

Correct the Sorty function.

Call the function 6 times to

test the different options:

Sorty (1,2,3)

Sorty (1,3,2)

Sorty (2,1,3)

Sorty (2,3,1)

Sorty (3,1,2)

Sorty (3,2,1)

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Testing and Debugging

Path Testing and Statement Coverage

CSC1

Path Testing
and

Statement
Coverage

Hussein Suleman

Department of Computer Science

University of Cape Town

Path Testing

49

▪ Create test cases to test every path of execution of the program
at least once.

Path 1:

val = 35

Path 2:

val = 10001

def Threshold(val):

if val>10000:

val=10000

return val

Checkpoint

50

def Sorty(x,y,z):

if x>y:

if y>z:

print(x,y,z)

else:

print(x,z,y)

else:

if y<z:

print(z,y,x)

else:

print(y,x,z)

How many inputs would you

need to do path testing for

this program?

Statement Coverage

51

▪ What if we had:
if a<25:

print ("Error in a")

else:

print ("No error in a")

if b<25:

print ("Error in b")

else:

print ("No error in b")

▪ Rather than test all paths, test all statements at least once.
▪ e.g., (a,b) = (10, 10), (50, 50)

Exercise

52

def riddle(n):

if n<=0:

return 0

a=1

b=1

for i in range(n-2):

a,b=a+b,a

return a

Equivalence classes:

small multiple of 5: 5
small non-multiples of 5: 3
large multiple of 5: 25
large non-multiples of 5: 23

Boundary values:

4, 5, 6, 9, 10, 11, 14, 15, 16

Statement coverage:

5, 14

Path coverage:

5, 7, 13, 20

What does this

program do?

Exercise

53

def riddle(n):

if n<=0:

return 0

a=1

b=1

for i in range(n-2):

a,b=a+b,a

return a

Equivalence classes:

n <=0

0<n<3

n>=35: 23

Boundary values:

-1,0,1,2,3,4

Statement coverage:

-5; 8

Path coverage:

-5;2;8

Glass and Black Boxes

54

If you can create your test cases based on only the problem
specification, it is black box testing.

▪ If you have to examine the code, it is glass box testing.

Which categories do these fall into?
▪ Exhaustive Testing

▪ Random Testing

▪ Equivalence classes/boundary values

▪ Path coverage

▪ Statement coverage

555555

Poll

Which of these is the best approach to determine test values?

▪ A – Exhaustive testing of all values

▪ B – Equivalence classes and boundary values

▪ C – Path testing

▪ D – Statement coverage

565656

Solution

Which of these is the best approach to determine test values?

▪ A – Exhaustive testing of all values

▪ B – Equivalence classes and boundary values

▪ C – Path testing

▪ D – Statement coverage

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

Introduction to
Programming

Hussein Suleman

Department of Computer Science

Testing and Debugging

Correcting Errors

CSC1

Correcting
Errors

Hussein Suleman

Department of Computer Science

University of Cape Town

Finding Errors

61

▪ What if a test case fails? Now what?

▪ Find the error and remove it, using:
▪ Tracing

▪ Debugger

Tracing

62

▪ Insert temporary statements into code to output

values during calculation.

▪ Very useful when there is no debugger!

▪ Example:

y = 4
x = y*y*2
z = x+5

print (z)
if z == 13:

…

Screen Output:

37

x 32

y 4

z 37

Z == 13 False

Debugging

63

▪ Debugging is the process of finding errors

or bugs in code.

▪ A debugger is a tool for executing an application where the
programmer can carefully control execution and inspect data.

▪ Features include:
▪ step through code one instruction at a time

▪ viewing variables (“Stack Data” in Wing101)

▪ insert and remove breakpoints to pause execution

Exercise

64

▪ Track the execution of riddle:
▪ Debugger

▪ Tracing statements

Problem

65

▪ Write a program to convert a decimal number to binary.

Binary Codes

66

• Computers use presence/absence of voltage.
▪ Possible values for digits: 0 and 1

Example:
▪ 102 = 1*21 + 0*20

= 210

▪ 1101 = 1*23 + 1*22 + 0*21 + 1*20

=8+4+1
=123

Note: writing a number

this way

102

means that the base is

‘2’, i.e. it is a binary

number.

An n-bit binary number can represent

numbers from 010 to (2n-1)10

Decimal to Binary Conversion

67

Algorithm:
quot = number;
i = 0;
repeat until quot == 0

quot = quot/2;
digit_i = remainder;
i++;

Example:
Convert 3710 to binary.

Calculation:
■ 37/2 = 18 rem 1 least sig. digit
■ 18/2 = 9 rem 0
■ 9/2 = 4 rem 1
■ 4/2 = 2 rem 0
■ 2/2 = 1 rem 0
■ 1/2 = 0 rem 1 most sig. digit

Result:
■ 3710 = 1001012

Binary converter as a program

def convert_to_binary(decimal):

result_string=""

while decimal>0:

remainder= decimal%2

decimal=decimal//2

result_string=str(remainder)+result_string

return result_string

▪ Use debugger to trace execution

Exercise

69

def convert_to_binary(decimal):

result_string=""

while decimal>0:

remainder=decimal%2

decimal=decimal//2

result_string=str(remainder)+result_string

return result_string

Boundary values:

4, 5, 6, 9, 10, 11, 14, 15, 16

Statement coverage:

5, 14

Path coverage:

5, 7, 13, 20

Equivalence classes:

small multiple of 5: 5
small non-multiples of 5: 3
large multiple of 5: 25
large non-multiples of 5: 23

▪ Determine test values for this function.

Exercise

70

▪ Correct the Sorty function.

71

A quote to end the section

“Program testing can, at best, show the presence of
errors, but never their absence.”

Edsger Dijkstra (1930-2002)

Dutch Computer Scientist

Unless otherwise stated, all materials are copyright of the University of Cape Town

© University of Cape Town

